Fully Convolutional Networks for Semantic Segmentation(全卷积网络FCN)

简介: 可以看看:https://github.com/jinhang/fcn 【论文信息】 《Fully Convolutional Networks for Semantic Segmentation》 CVPR 2015 best paper Reference link: http://blog.

可以看看:https://github.com/jinhang/fcn

【论文信息】

《Fully Convolutional Networks for Semantic Segmentation》

CVPR 2015 best paper

Reference link: 
http://blog.csdn.NET/tangwei2014
http://blog.csdn.net/u010025211/article/details/51209504

概览&主要贡献

提出了一种end-to-end的做semantic segmentation的方法,简称FCN

如下图所示,直接拿segmentation 的 ground truth作为监督信息,训练一个端到端的网络,让网络做pixelwise的prediction,直接预测label map
(笔者自己类比思想:faster rcnn中的rbn->(fc->region proposal) label map-> fast-rcnn for fine tuning)



【方法简介】

主要思路是把CNN改为FCN,输入一幅图像后直接在输出端得到dense prediction,也就是每个像素所属的class,从而得到一个end-to-end的方法来实现image  semantic segmentation。    

 我们已经有一个CNN模型,首先要把CNN的全连接层看成是卷积层,卷积模板大小就是输入的特征map的大小,也就是说把全连接网络看成是对整张输入map做卷积,全连接层分别有4096个6*6的卷积核,4096个1*1的卷积核,1000个1*1的卷积核,如下图:


接下来就要对这1000个1*1的输出,做upsampling,得到1000个原图大小(如32*32)的输出,这些输出合并后,得到上图所示的heatmap

【细节记录】


dense prediction

这里通过upsampling得到dense prediction,作者研究过3种方案:

1,shift-and-stitch:设原图与FCN所得输出图之间的降采样因子是f,那么对于原图的每个f*f的区域(不重叠),“shift the input x pixels to the right and y pixels down for every (x,y) ,0 < x,y < f." 把这个f*f区域对应的output作为此时区域中心点像素对应的output,这样就对每个f*f的区域得到了f^2个output,也就是每个像素都能对应一个output,所以成为了dense prediction。

2,filter rarefaction:就是放大CNN网络中的subsampling层的filter的尺寸,得到新的filter:


其中s是subsampling的滑动步长,这个新filter的滑动步长要设为1,这样的话,subsampling就没有缩小图像尺寸,最后可以得到dense prediction。

以上两种方法作者都没有采用,主要是因为这两种方法都是trad-off的,原因是:

对于第二种方法, 下采样的功能被减弱,使得更细节的信息能被filter看到,但是receptive fileds会相对变小,可能会损失全局信息,且会对卷积层引入更多运算。

对于第一种方法,虽然receptive fileds没有变小,但是由于原图被划分成f*f的区域输入网络,使得filters无法感受更精细的信息

重点方法:
反卷积层->pixel wise->bp parameters->实现把conv的前传和反传过程对调一下即可
3,这里upsampling的操作可以看成是反卷积(deconvolutional),卷积运算的参数和CNN的参数一样是在训练FCN模型的过程中通过bp算法学习得到。

fusion prediction

以上是对CNN的结果做处理,得到了dense prediction,而作者在试验中发现,得到的分割结果比较粗糙,所以考虑加入更多前层的细节信息,也就是把倒数第几层的输出和最后的输出做一个fusion,实际上也就是加和:


这样就得到第二行和第三行的结果,实验表明,这样的分割结果更细致更准确。在逐层fusion的过程中,做到第三行再往下,结果又会变差,所以作者做到这里就停了。可以看到如上三行的对应的结果:



问题&解决办法


1.如何做pixelwise的prediction

传统的网络是subsampling的,对应的输出尺寸会降低,要想做pixelwiseprediction,必须保证输出尺寸。

解决办法:

(1)对传统网络如AlexNet,VGG等的最后全连接层变成卷积层

例如VGG16中第一个全连接层是25088x4096的,将之解释为512x7x7x4096的卷积核,则如果在一个更大的输入图像上进行卷积操作(上图的下半部分),原来输出4096维feature的节点处(上图的上半部分),就会输出一个coarsefeature map。

这样做的好处是,能够很好的利用已经训练好的supervisedpre-training的网络,不用像已有的方法那样,从头到尾训练,只需要fine-tuning即可,训练efficient。

(2)加In-network upsampling layer。

对中间得到的featuremap做bilinear上采样,就是反卷积层。实现把conv的前传和反传过程对调一下即可。

2.如何refine,得到更好的结果?

upsampling中步长是32,输入为3x500x500的时候,输出是544x544,边缘很不好,并且limit thescale of detail of the upsampling output。

解决办法:




采用skiplayer的方法,在浅层处减小upsampling的步长,得到的finelayer 和 高层得到的coarselayer做融合,然后再upsampling得到输出。


这种做法兼顾local和global信息,即文中说的combiningwhat and where,取得了不错的效果提升。FCN-32s为59.4,FCN-16s提升到了62.4,FCN-8s提升到62.7。可以看出效果还是很明显的。


3.训练细节

用AlexNet,VGG16或者GoogleNet训练好的模型做初始化,在这个基础上做fine-tuning,全部都fine-tuning。

采用wholeimage做训练,不进行patchwise sampling。实验证明直接用全图已经很effectiveand efficient。

对classscore的卷积层做全零初始化。随机初始化在性能和收敛上没有优势。



【实验设计】

1,对比3种性能较好的几种CNN:AlexNet, VGG16, GoogLeNet进行实验,选择VGG16

2,对比FCN-32s-fixed, FCN-32s, FCN-16s, FCN-8s,证明最好的dense prediction组合是8s

3,FCN-8s和state-of-the-art对比是最优的,R-CNN, SDS.   FCN-16s

4,FCN-16s和现有的一些工作对比,是最优的

5,FCN-32s和FCN-16s在RGB-D和HHA的图像数据集上,优于state-of-the-art

【总结】

优点

1,训练一个end-to-end的FCN模型,利用卷积神经网络的很强的学习能力,得到较准确的结果,以前的基于CNN的方法都是要对输入或者输出做一些处理,才能得到最终结果。

2,直接使用现有的CNN网络,如AlexNet, VGG16, GoogLeNet,只需在末尾加上upsampling,参数的学习还是利用CNN本身的反向传播原理,"whole image training is effective and efficient."

3,不限制输入图片的尺寸,不要求图片集中所有图片都是同样尺寸,只需在最后upsampling时按原图被subsampling的比例缩放回来,最后都会输出一张与原图大小一致的dense prediction map。

缺陷

根据论文的conclusion部分所示的实验输出sample如下图:


可以直观地看出,本文方法和Groud truth相比,容易丢失较小的目标,比如第一幅图片中的汽车,和第二幅图片中的观众人群,如果要改进的话,这一点上应该是有一些提升空间的。

结果

当然是state-of-the-art的了。
感受一下:


目录
相关文章
|
1月前
|
机器学习/深度学习 数据可视化 算法框架/工具
深度学习第3天:CNN卷积神经网络
深度学习第3天:CNN卷积神经网络
35 0
|
1月前
|
机器学习/深度学习 人工智能 自动驾驶
什么是人工智能领域的卷积神经网络
什么是人工智能领域的卷积神经网络
25 0
|
20天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
PYTHON TENSORFLOW 2二维卷积神经网络CNN对图像物体识别混淆矩阵评估|数据分享
PYTHON TENSORFLOW 2二维卷积神经网络CNN对图像物体识别混淆矩阵评估|数据分享
|
17天前
|
机器学习/深度学习 存储 监控
数据分享|Python卷积神经网络CNN身份识别图像处理在疫情防控下口罩识别、人脸识别
数据分享|Python卷积神经网络CNN身份识别图像处理在疫情防控下口罩识别、人脸识别
|
4天前
|
机器学习/深度学习 PyTorch 算法框架/工具
使用Python实现卷积神经网络(CNN)
使用Python实现卷积神经网络(CNN)的博客教程
29 1
|
8天前
|
机器学习/深度学习 并行计算 测试技术
BiTCN:基于卷积网络的多元时间序列预测
该文探讨了时间序列预测中模型架构的选择,指出尽管MLP和Transformer模型常见,但CNN在预测领域的应用较少。BiTCN是一种利用两个时间卷积网络来编码历史和未来协变量的模型,提出于《Parameter-efficient deep probabilistic forecasting》(2023年3月)。它包含多个由扩张卷积、GELU激活函数、dropout和全连接层组成的临时块,有效地处理序列数据。实验表明,BiTCN在具有外生特征的预测任务中表现优于N-HiTS和PatchTST。BiTCN的效率和性能展示了CNN在时间序列预测中的潜力。
21 1
|
10天前
|
机器学习/深度学习 人工智能 算法
【AI 初识】什么是卷积神经网络 (CNN)?
【5月更文挑战第2天】【AI 初识】什么是卷积神经网络 (CNN)?
|
10天前
|
机器学习/深度学习 自然语言处理 搜索推荐
|
12天前
|
机器学习/深度学习 PyTorch TensorFlow
【Python机器学习专栏】卷积神经网络(CNN)的原理与应用
【4月更文挑战第30天】本文介绍了卷积神经网络(CNN)的基本原理和结构组成,包括卷积层、激活函数、池化层和全连接层。CNN在图像识别等领域表现出色,其层次结构能逐步提取特征。在Python中,可利用TensorFlow或PyTorch构建CNN模型,示例代码展示了使用TensorFlow Keras API创建简单CNN的过程。CNN作为强大深度学习模型,未来仍有广阔发展空间。
|
14天前
|
机器学习/深度学习 算法 TensorFlow
TensorFlow 2keras开发深度学习模型实例:多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN)
TensorFlow 2keras开发深度学习模型实例:多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN)