如何用Go语言每分钟处理100万个请求

简介:

摘要:作者结合自身工作经历,以一个项目为案例,通过多个Go语言程序实例的尝试,阐述了Go语言是如何每分钟可以处理100万个请求的,以下是译文。

我在几个不同的公司从事反垃圾邮件,反病毒和反恶意软件工作超过15年,现在我知道这些系统的复杂性可能是由于我们每天处理的大量数据造成的。

目前,我是 smsjunk.com 的CEO和 KnowBe4 的首席架构师,两个活跃在网络安全行业的公司。

有趣的是,在过去10年左右的时间里,作为一名软件工程师,我所参与的所有web后端开发大部分都是以Ruby on Rails(Rails是使用Ruby语言编写的网页程序开发框架,目的是为开发者提供常用组件)开发的。不要误会我,我热爱Ruby on Rails,我相信它是一个令人着迷的开发环境,但一段时间后,你开始以Ruby的方式思考和设计系统,忘了如何高效和原本可以利用多线程、并行、快速执行和小的内存消耗来简化软件架构。多年来,我是一个C / C++、Delphi和C #开发人员,我刚刚意识到,用合适的工具来完成工作可能会降低事情的复杂度。

我不太热衷于开发语言和框架的战争,网站之间总是为此争吵。我相信效率、生产率和代码的可维护性主要取决于如何简单地构建解决方案。 问题

当我们在一个匿名的遥测和分析系统上工作时,我们的目标是能够处理来自数百万终端的大量的POST请求。Web处理程序将接收一个JSON文档,其中可能包含需要写入Amazon S3的许多有效负载的集合,这是为了使map-reduce系统稍后操作这个数据。

传统上,我们将研究创造一个一阶作业者架构,利用诸如:

  • Sidekiq
  • Resque
  • DelayedJob
  • Elasticbeanstalk Worker Tier
  • RabbitMQ
  • 等等…

设置2个不同的集群,一个用于web前端,另一个用于作业者,这样会扩大可以处理的后台工作的数量。

但从一开始,我们的团队就知道应该这样做,因为在讨论阶段,我们预见这可能是一个非常大的流量系统。我使用Go语言大约2年左右的时间,我们开发了一些在用的系统,但是没有一个系统能得到这么多的负载。

首先通过创建一些structure,定义通过POST调用来接收到的web请求负载,还有一个上传请求负载到S3 bucket的函数。

如何用Go语言每分钟处理100万个请求

Go语言程序的单纯方法

最初我们采取了一个非常单纯的POST处理方式,仅仅试图将任务并行化处理放到一个简单的goroutine:

如何用Go语言每分钟处理100万个请求

对于中等负载来说,这可能对大多数人是有效的,但这很快证明在大型负载时,效果不太好。我们预期有很多的请求,但当我们部署第一个版本到产品中时,并没有看到这个数量级的请求。我们完全低估了流量。

上面的方法在几个方面都不好,没有办法控制我们正在大量生产的Go程序要产生多少个例程。由于我们每分钟收到100万个POST请求,理所当然的,这段代码很快就崩溃了。

再次尝试

我们需要寻找一个不同的方式。从一开始,我们就讨论如何保持请求处理程序的生命周期非常短,并在后台生成处理进程。当然,这是必须在Ruby on Rails领域要做的,否则这将限制所有可用的web处理器,无论你使用的是puma, unicorn, passenger中的哪一个(请不要参加JRuby讨论)。那么我们就需要利用通用的解决方案去做这个,例如Resque, Sidekiq, SQS,等等。清单还可以继续列下去,因为有很多方法可以做到这一点。

所以第二个版本是创建一个缓存通道,在这里我们可以对一些作业进行排队并上传到S3,由于我们可以控制队列中的最大项目数,在内存中我们有足够多的RAM对任务进行排队,我们认为只在通道队列中缓存作业是可以的。

如何用Go语言每分钟处理100万个请求

然后实际上的作业出列和处理,我们使用的是类似的函数:

如何用Go语言每分钟处理100万个请求

说实话,我不知道我们在想什么。这一定是一个充满红牛的深夜。这种方法没有给我们带来任何好处,我们用缓冲队列来交换有缺陷的并发,也只是推迟了问题的产生时间而已。我们的同步处理器一次只上传一个有效负载到S3,而且由于传入请求的速率比单处理器上传到S3的能力大得多,所以缓冲通道很快就达到了极限,限制了请求处理程序来排队更多项目的能力。

我们只是简单地回避这个问题,最终导致系统的死亡。在我们部署了这个有缺陷的版本之后,我们的延迟率以不变的速率持续增长。

如何用Go语言每分钟处理100万个请求

更好的解决方案

当使用Go语言通道时,我们决定利用通用模式以便创造一个2阶的通道系统,一个用于作业排队,另外一个控制多少作业者同时在JobQueue上操作。

这个想法是以某种可持续的速度并行上传到S3,它既不会削弱机器性能,也不会从S3开始生成连接错误。所以我们选择了创建一个作业/作业者模式。对那些熟悉java,C#等语言的人来说,可以考虑采用Go语言实现通道方式而不是作业者线程池的方式。

如何用Go语言每分钟处理100万个请求如何用Go语言每分钟处理100万个请求如何用Go语言每分钟处理100万个请求

我们修改了Web请求处理程序,创建一个带负载的jobstruct实例,发送到JobQueue通道,便于作业者去拾取。

如何用Go语言每分钟处理100万个请求

在网站服务器初始化过程中,我们创建一个Dispatcher,调用Run()去创建一个作业者池,开始侦听出现在JobQueue的作业。

 
 
  1. dispatcher := NewDispatcher(MaxWorker)  
  2. dispatcher.Run() 

下面是用于dispatcher执行的代码:

如何用Go语言每分钟处理100万个请求如何用Go语言每分钟处理100万个请求

注意,我们会提供被实例化和被添加到作业者池的最大的作业者量。 因为我们这个带有dockerized Go环境的项目使用了亚马逊Elasticbeanstalk,我们总是设法遵循12要素方法论来配置生产中的系统,从环境变量中读取这些数值。这样就可以控制有多少作业者和作业队列的最大值,因此,我们可以快速地调整这些值,而不需要重新部署集群。

 
 
  1. var (  
  2. MaxWorker = os.Getenv(“MAX_WORKERS”)  
  3. MaxQueue = os.Getenv(“MAX_QUEUE”)  

在部署完它之后,我们立刻发现所有的延迟率都降到了无关紧要的数字,系统处理请求的能力急剧上升。

如何用Go语言每分钟处理100万个请求

弹性负载均衡完全预热几分钟后,我们看到ElasticBeanstalk应用服务每分钟逼近100万个请求。通常在早晨的几个小时里,流量高峰会超过每分钟100万个请求。

一旦我们部署了新的代码,服务器的数量从100台减少到大约20台。

如何用Go语言每分钟处理100万个请求

在恰当地配置了集群和自动缩放设置以后,我们能够把它降低到仅有4x EC2 c4。如果CPU连续5分钟超过90%,大型实例和弹性自动缩放设置就生成一个新实例。

如何用Go语言每分钟处理100万个请求

结论

简单总是在我的字典里获胜。我们可以设计一个复杂系统,它具有多队列,后台作业者,复杂部署的特点。但是相反我们决定利用Elasticbeanstalk的自动缩放和高效简单的方式去并发,Go语言很好的提供了这些功能。

并不是每天你仅有四台机器的集群,去处理每分钟写入到亚马逊S3 bucket的100万个POST请求,这可能比我最新的MacBook Pro功能强大的多。

总有合适的工具适合这项工作。有时,当您的Ruby on Rails系统需要一个非常强大的web处理程序时,可以稍微考虑一下Ruby生态系统之外的更简单、更强大的替代解决方案。


本文作者:佚名

来源:51CTO

目录
打赏
0
0
0
0
16427
分享
相关文章
员工上网行为监控中的Go语言算法:布隆过滤器的应用
在信息化高速发展的时代,企业上网行为监管至关重要。布隆过滤器作为一种高效、节省空间的概率性数据结构,适用于大规模URL查询与匹配,是实现精准上网行为管理的理想选择。本文探讨了布隆过滤器的原理及其优缺点,并展示了如何使用Go语言实现该算法,以提升企业网络管理效率和安全性。尽管存在误报等局限性,但合理配置下,布隆过滤器为企业提供了经济有效的解决方案。
83 8
员工上网行为监控中的Go语言算法:布隆过滤器的应用
|
1月前
|
go语言中的数组(Array)
go语言中的数组(Array)
116 67
内网监控系统之 Go 语言布隆过滤器算法深度剖析
在数字化时代,内网监控系统对企业和组织的信息安全至关重要。布隆过滤器(Bloom Filter)作为一种高效的数据结构,能够快速判断元素是否存在于集合中,适用于内网监控中的恶意IP和违规域名筛选。本文介绍其原理、优势及Go语言实现,提升系统性能与响应速度,保障信息安全。
19 5
Go语言中的加密和解密是如何实现的?
Go语言通过标准库中的`crypto`包提供丰富的加密和解密功能,包括对称加密(如AES)、非对称加密(如RSA、ECDSA)及散列函数(如SHA256)。`encoding/base64`包则用于Base64编码与解码。开发者可根据需求选择合适的算法和密钥,使用这些包进行加密操作。示例代码展示了如何使用`crypto/aes`包实现对称加密。加密和解密操作涉及敏感数据处理,需格外注意安全性。
35 14
Go语言中的包(package)是如何组织的?
在Go语言中,包是代码组织和管理的基本单元,用于集合相关函数、类型和变量,便于复用和维护。包通过目录结构、文件命名、初始化函数(`init`)及导出规则来管理命名空间和依赖关系。合理的包组织能提高代码的可读性、可维护性和可复用性,减少耦合度。例如,`stringutils`包提供字符串处理函数,主程序导入使用这些函数,使代码结构清晰易懂。
55 11
Go语言中的map数据结构是如何实现的?
Go 语言中的 `map` 是基于哈希表实现的键值对数据结构,支持快速查找、插入和删除操作。其原理涉及哈希函数、桶(Bucket)、动态扩容和哈希冲突处理等关键机制,平均时间复杂度为 O(1)。为了确保线程安全,Go 提供了 `sync.Map` 类型,通过分段锁实现并发访问的安全性。示例代码展示了如何使用自定义结构体和切片模拟 `map` 功能,以及如何使用 `sync.Map` 进行线程安全的操作。
|
17天前
|
深度剖析核心科技:Go 语言赋能局域网管理监控软件进阶之旅
在局域网管理监控中,跳表作为一种高效的数据结构,能显著提升流量索引和查询效率。基于Go语言的跳表实现,通过随机化索引层生成、插入和搜索功能,在高并发场景下展现卓越性能。跳表将查询时间复杂度优化至O(log n),助力实时监控异常流量,保障网络安全与稳定。示例代码展示了其在实际应用中的精妙之处。
37 9
|
27天前
|
Go 语言中实现 RSA 加解密、签名验证算法
随着互联网的发展,安全需求日益增长。非对称加密算法RSA成为密码学中的重要代表。本文介绍如何使用Go语言和[forgoer/openssl](https://github.com/forgoer/openssl)库简化RSA加解密操作,包括秘钥生成、加解密及签名验证。该库还支持AES、DES等常用算法,安装简便,代码示例清晰易懂。
59 12
|
30天前
|
解锁企业计算机监控的关键:基于 Go 语言的精准洞察算法
企业计算机监控在数字化浪潮下至关重要,旨在保障信息资产安全与高效运营。利用Go语言的并发编程和系统交互能力,通过进程监控、网络行为分析及应用程序使用记录等手段,实时掌握计算机运行状态。具体实现包括获取进程信息、解析网络数据包、记录应用使用时长等,确保企业信息安全合规,提升工作效率。本文转载自:[VIPShare](https://www.vipshare.com)。
32 1
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等