Keras多GPU训练指南

简介: 随着Keras(v2.0.8)最新版本的发布,使用多GPU 训练深度神经网络将变得非常容易,就跟调用函数一样简单!利用多GPU,能够获得准线性的提速。

更多深度文章,请关注:https://yq.aliyun.com/cloud

1.jpg

Keras是我最喜欢的Python深度学习框架,特别是在图像分类领域。我在很多地方都使用到了Keras,包括生产系统、我自己的深度学习项目,以及PyImageSearch博客。

我的新书“基于Keras的深度学习计算机视觉”有三分之二的篇幅都跟这个框架有关。然而,在该框架过程中遇到的最大的一个问题就是执行多GPU训练。

但是,这个问题将不复存在

随着Keras(v2.0.8)最新版本的发布,使用多GPU 训练深度神经网络将变得非常容易,就跟调用函数一样简单!

如何使用Keras进行多GPU训练

当我第一次使用Keras的时候,我深深爱上了它的API。它简单而又优雅,类似于scikit-learn。但是,它又非常强大,能够实现并训练最先进的深度神经网络。

然后,对于Keras我最失望的的地方之一就是在多GPU环境中非常难用。如果你使用的是Theano,请忘记这一点,因为多GPU训练不会发生。虽然TensorFlow可以实现的,但需要编写大量的代码以及做出大量的调整来使你的网络支持多GPU训练。我喜欢在执行多GPU训练的时候使用mxnet作为Keras的后端,但它需要配置很多东西。

这所有的一切都随着FrançoisChollet公告的出现而发生了改变,使用TensorFlow作为后端的多GPU支持现在已经放到了Keras v2.0.8中。这个功劳很大程度上归功于@kuza55和他们的keras-extras库。我使用这个多GPU功能已经有将近一年时间了,我非常高兴看到它成为Keras官方发布的一部分。

在这篇文章中,我将演示如何使用Keras、Python和深度学习来训练卷积神经网络进行图像分类。要获取相关代码,请访问这个网页中的“Downloads”章节。

MiniGoogLeNet深度学习架构

2.png
图1:MiniGoogLeNet架构是它的兄弟GoogLeNet/Inception的一个缩减版。

图1中,我们可以看到独立的convolution(左)、inception(中)和downsample(右)模块,下面则是由这些构建块构建而成的整个MiniGoogLeNet架构(底部)。我们将在本文后面的多GPU实验中使用MiniGoogLeNet架构。

MiniGoogLenet中的Inception模块是由Szegedy等人设计的原始Inception模块的一个变体。我最初是从@ericjang11@pluskid的推文中了解到“Miniception”模块的,他们的推文详细描述了该模块和相关的MiniGoogLeNet架构。

然后,我用Keras和Python实现了MiniGoogLeNet架构,并将其作为“基于Keras的深度学习计算机视觉”一书的一部分。

对MiniGoogLeNet Keras实现的完整描述已经超出了本文的讨论范围,如果你对此感兴趣的话,请阅读我这本书

用Keras和多GPU训练深度神经网络

下面我们开始使用Keras和多GPU来训练深度学习网络。

在开始之前,请确保你的环境中已经安装了Keras 2.0.8(或更高版本):

$ workon dl4cv
$ pip install --upgrade keras
AI 代码解读

创建一个新文件,将其命名为train.py,然后插入以下代码:

# set the matplotlib backend so figures can be saved in the background
# (uncomment the lines below if you are using a headless server)
# import matplotlib
# matplotlib.use("Agg")

# import the necessary packages
from pyimagesearch.minigooglenet import MiniGoogLeNet
from sklearn.preprocessing import LabelBinarizer
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import LearningRateScheduler
from keras.utils.training_utils import multi_gpu_model
from keras.optimizers import SGD
from keras.datasets import cifar10
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
import argparse
AI 代码解读

如果你使用的是无外设服务器,则需要取消第3行和第4行上注释符来配置matplotlib后端。 这能让matplotlib图保存到磁盘。 如果你没有使用无外设服务器(即键盘、鼠标、显示器已连接系统),则无需去掉注释符。

在这段代码中,导入了该脚本所需的包。第7行pyimagesearch模块导入MiniGoogLeNet。另一个需要注意的是第13行,我们导入了CIFAR10数据集。 这个帮助函数能让我们仅使用一行代码即可从磁盘加载CIFAR-10数据集。

现在我们来解析命令行参数:

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-o", "--output", required=True,
    help="path to output plot")
ap.add_argument("-g", "--gpus", type=int, default=1,
    help="# of GPUs to use for training")
args = vars(ap.parse_args())

# grab the number of GPUs and store it in a conveience variable
G = args["gpus"]
AI 代码解读

我们在第20-25行使用argparse来解析一个必需的和一个可选的参数:

  • --output:训练完毕后输出图的路径。
  • --gpus:用于训练的GPU的个数。

在加载命令行参数后,为方便起见,我们将GPU数量保存在G中(第28行

接着,我们要初始化用于配置训练过程的两个重要变量,然后定义poly_decay,这是一个学习速率调度函数,类似于Caffe多项式学习速率衰减


# definine the total number of epochs to train for along with the
# initial learning rate
NUM_EPOCHS = 70
INIT_LR = 5e-3

def poly_decay(epoch):
    # initialize the maximum number of epochs, base learning rate,
    # and power of the polynomial
    maxEpochs = NUM_EPOCHS
    baseLR = INIT_LR
    power = 1.0

    # compute the new learning rate based on polynomial decay
    alpha = baseLR * (1 - (epoch / float(maxEpochs))) ** power

    # return the new learning rate
    return alpha
AI 代码解读

设置NUM_EPOCHS = 70,这是训练数据通过网络(第32行)的迭代次数。我们还初始化了学习速率INIT_LR = 5e-3,这是我们在以前的试验中发现的值(第33行)。

这里,我们定义了poly_decay函数,这个函数类似于于Caffe的多项式学习速率衰减(第35-46行)。从本质上讲,这个函数更新了训练过程中的学习速度,在每次迭代之后能有效减少学习速率。 power = 1.0将把衰减从多项式变为线性变化。

接下来,我们将加载训练和测试数据,并将图像数据从整数转换为浮点数:

# load the training and testing data, converting the images from
# integers to floats
print("[INFO] loading CIFAR-10 data...")
((trainX, trainY), (testX, testY)) = cifar10.load_data()
trainX = trainX.astype("float")
testX = testX.astype("float")
AI 代码解读

接着对数据应用均值减法:

# apply mean subtraction to the data
mean = np.mean(trainX, axis=0)
trainX -= mean
testX -= mean
AI 代码解读

第56行,计算了所有训练图像的平均值,然后在第57和58行,将训练和测试集中的每个图像减去这个平均值。

然后,执行“独热编码(one-hot encoding)”:

# convert the labels from integers to vectors
lb = LabelBinarizer()
trainY = lb.fit_transform(trainY)
testY = lb.transform(testY)
AI 代码解读

独热编码将分类标签从单个整数转换为向量,这样,就可以对其应用分类交叉熵损失函数。 我们已经在第61-63行考虑到了这一点。

接下来,创建一个数据增强器和一组回调函数:

# construct the image generator for data augmentation and construct
# the set of callbacks
aug = ImageDataGenerator(width_shift_range=0.1,
    height_shift_range=0.1, horizontal_flip=True,
    fill_mode="nearest")
callbacks = [LearningRateScheduler(poly_decay)]
AI 代码解读

第67-69行,构建了图像生成器,用于数据扩充。数据扩充在是在训练过程中使用的一种方法,可通过对图像进行随机变换来随机改变图像。通过这些变换,网络将会持续看到增加的示例,这有助于网络更好地泛化到验证数据上,但同时也可能在训练集上表现得更差。 在多数情况下,这种权衡是值得的。

第70行创建了一个回调函数,这使得学习速率在每次迭代之后发生衰减。请注意,函数名为poly_decay

下面,我们来看看GPU变量:

# check to see if we are compiling using just a single GPU
if G <= 1:
    print("[INFO] training with 1 GPU...")
    model = MiniGoogLeNet.build(width=32, height=32, depth=3,
        classes=10)
AI 代码解读

如果GPU数量小于或等于1,则通过.build函数(第73-76行)来初始化model,否则在训练期间并行化模型:

# otherwise, we are compiling using multiple GPUs
else:
    print("[INFO] training with {} GPUs...".format(G))

    # we'll store a copy of the model on *every* GPU and then combine
    # the results from the gradient updates on the CPU
    with tf.device("/cpu:0"):
        # initialize the model
        model = MiniGoogLeNet.build(width=32, height=32, depth=3,
            classes=10)
    
    # make the model parallel
    model = multi_gpu_model(model, gpus=G)
AI 代码解读

在Keras中创建一个多GPU模型需要一些额外的代码,但不是很多!

首先,第84行,你会注意到我们已经指定使用CPU(而不是GPU)作为网络的上下文。为什么我们要用CPU呢?CPU可用于处理任何一种工作(比如在GPU内存上移动训练图像),而GPU本身则负责繁重的工作。在这种情况下,CPU将用于实例化基本模型。

然后,在第90行调用multi_gpu_model。 该函数将模型从CPU复制到所有的GPU上,从而获得单机多GPU的数据并行环境。

在训练网络图像的时候,训练任务将分批到每个GPU上执行。CPU将从每个GPU上获取梯度,然后执行梯度更新步骤。

然后,可以编译模型并启动训练过程了:

# initialize the optimizer and model
print("[INFO] compiling model...")
opt = SGD(lr=INIT_LR, momentum=0.9)
model.compile(loss="categorical_crossentropy", optimizer=opt,
    metrics=["accuracy"])

# train the network
print("[INFO] training network...")
H = model.fit_generator(
    aug.flow(trainX, trainY, batch_size=64 * G),
    validation_data=(testX, testY),
    steps_per_epoch=len(trainX) // (64 * G),
    epochs=NUM_EPOCHS,
    callbacks=callbacks, verbose=2)
AI 代码解读

第94行,我们构建了随机梯度下降(SGD)优化器。随后,我们用SGD优化器和分类交叉熵损失函数来编译模型。

现在,我们要开始训练网络了!

要启动训练,我们调用了model.fit_generator并提供了必要的参数。我们希望每个GPU上的批处理大小为64,这是由batch_size=64 * G指定的。训练将持续70此迭代(我们之前指定的)。梯度更新的结果将合并到CPU上,然后在整个训练过程中应用在每个GPU上。

现在训练和测试完成了,让我们画出损失/准确性曲线,以使整个训练过程可视化:

# grab the history object dictionary
H = H.history

# plot the training loss and accuracy
N = np.arange(0, len(H["loss"]))
plt.style.use("ggplot")
plt.figure()
plt.plot(N, H["loss"], label="train_loss")
plt.plot(N, H["val_loss"], label="test_loss")
plt.plot(N, H["acc"], label="train_acc")
plt.plot(N, H["val_acc"], label="test_acc")
plt.title("MiniGoogLeNet on CIFAR-10")
plt.xlabel("Epoch #")
plt.ylabel("Loss/Accuracy")
plt.legend()

# save the figure
plt.savefig(args["output"])
plt.close()
AI 代码解读

最后一段代码只是使用matplotlib来绘制训练/测试的损失和准确性曲线(第112-121行),然后将数据保存到磁盘上(第124行)。

Keras的多GPU运行结果

来看下我们努力的结果。我们先在一个GPU上进行训练以获得基线结果:

$ python train.py --output single_gpu.png
[INFO] loading CIFAR-10 data...
[INFO] training with 1 GPU...
[INFO] compiling model...
[INFO] training network...
Epoch 1/70
 - 64s - loss: 1.4323 - acc: 0.4787 - val_loss: 1.1319 - val_acc: 0.5983
Epoch 2/70
 - 63s - loss: 1.0279 - acc: 0.6361 - val_loss: 0.9844 - val_acc: 0.6472
Epoch 3/70
 - 63s - loss: 0.8554 - acc: 0.6997 - val_loss: 1.5473 - val_acc: 0.5592
...
Epoch 68/70
 - 63s - loss: 0.0343 - acc: 0.9898 - val_loss: 0.3637 - val_acc: 0.9069
Epoch 69/70
 - 63s - loss: 0.0348 - acc: 0.9898 - val_loss: 0.3593 - val_acc: 0.9080
Epoch 70/70
 - 63s - loss: 0.0340 - acc: 0.9900 - val_loss: 0.3583 - val_acc: 0.9065
Using TensorFlow backend.

real    74m10.603s
user    131m24.035s
sys     11m52.143s
AI 代码解读

3.png
图2:在单个GPU上使用CIFAR-10对MiniGoogLeNet网络进行训练和测试的实验结果。

在这个实验中,我在NVIDIA DevBox上使用了单个Titan X GPU进行了训练。 每一个迭代花了大概63秒,总训练时间为74分10秒

然后,执行以下命令在四个Titan X GPU上进行训练:

$ python train.py --output multi_gpu.png --gpus 4
[INFO] loading CIFAR-10 data...
[INFO] training with 4 GPUs...
[INFO] compiling model...
[INFO] training network...
Epoch 1/70
 - 21s - loss: 1.6793 - acc: 0.3793 - val_loss: 1.3692 - val_acc: 0.5026
Epoch 2/70
 - 16s - loss: 1.2814 - acc: 0.5356 - val_loss: 1.1252 - val_acc: 0.5998
Epoch 3/70
 - 16s - loss: 1.1109 - acc: 0.6019 - val_loss: 1.0074 - val_acc: 0.6465
...
Epoch 68/70
 - 16s - loss: 0.1615 - acc: 0.9469 - val_loss: 0.3654 - val_acc: 0.8852
Epoch 69/70
 - 16s - loss: 0.1605 - acc: 0.9466 - val_loss: 0.3604 - val_acc: 0.8863
Epoch 70/70
 - 16s - loss: 0.1569 - acc: 0.9487 - val_loss: 0.3603 - val_acc: 0.8877
Using TensorFlow backend.

real    19m3.318s
user    104m3.270s
sys     7m48.890s
AI 代码解读

4.png
图3:针对CIFAR10数据集在多GPU(4个Titan X GPU)上使用Keras和MiniGoogLeNet的训练结果。训练结果与单GPU的训练结果差不多,训练时间减少约75%。

在这里,可以看到训练过程得到了准线性的提速:使用四个GPU,可以将每次迭代减少到16秒。整个网络的训练耗时19分3秒

正如你所看到的,使用Keras和多个GPU来训练深度神经网络不仅简单而且高效!

注意:在这种情况下,单GPU实验获得的精度略高于多GPU。这是因为在训练任何一种随机机器学习模型的时候,都会出现一些差异。如果将这些结果平均一下,那么它们(几乎)是相同的。

总结

在今天的博文中,我们学到了如何使用多个GPU来训练基于Keras的深度神经网络。利用多个GPU,我们获得了准线性的提速。为了验证这一点,我们使用CIFAR-10数据集训练了MiniGoogLeNet。使用单个GPU,单次迭代时间为63秒,总训练时间为74分10秒。然而,使用Keras和Python在多GPU上训练的时候,单次迭代时间缩短到了16秒,总训练时间为19分03秒

在Keras中启用多GPU训练就跟调用函数一样简单, 强烈建议你尽早使用多GPU进行训练。我猜想,在将来multi_gpu_model肯定会进一步得到改进,能让我们指定使用哪几个GPU进行训练,并最终实现多系统的训练。

文章原标题《How-To: Multi-GPU training with Keras, Python, and deep learning》,作者:Adrian Rosebrock,译者:夏天,审校:主题曲。

文章为简译,更为详细的内容,请查看原文

本文由北邮@爱可可-爱生活老师推荐,阿里云云栖社区组织翻译。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
打赏
0
0
0
0
1807
分享
相关文章
【AMP实操】解放你的GPU运行内存!在pytorch中使用自动混合精度训练
【AMP实操】解放你的GPU运行内存!在pytorch中使用自动混合精度训练
417 0
阿里云GPU加速:大模型训练与推理的全流程指南
随着深度学习和大规模模型的普及,GPU成为训练和推理的关键加速器。本文将详细介绍如何利用阿里云GPU产品完成大模型的训练与推理。我们将使用Elastic GPU、阿里云深度学习镜像、ECS(云服务器)等阿里云产品,通过代码示例和详细说明,带你一步步完成整个流程。
2900 0
Bert-vits2最终版Bert-vits2-2.3云端训练和推理(Colab免费GPU算力平台)
对于深度学习初学者来说,JupyterNoteBook的脚本运行形式显然更加友好,依托Python语言的跨平台特性,JupyterNoteBook既可以在本地线下环境运行,也可以在线上服务器上运行。GoogleColab作为免费GPU算力平台的执牛耳者,更是让JupyterNoteBook的脚本运行形式如虎添翼。 本次我们利用Bert-vits2的最终版Bert-vits2-v2.3和JupyterNoteBook的脚本来复刻生化危机6的人气角色艾达王(ada wong)。
Bert-vits2最终版Bert-vits2-2.3云端训练和推理(Colab免费GPU算力平台)
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
51 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
MiniMind:2小时训练出你的专属AI!开源轻量级语言模型,个人GPU轻松搞定
MiniMind 是一个开源的超小型语言模型项目,帮助开发者以极低成本从零开始训练自己的语言模型,最小版本仅需25.8M参数,适合在普通个人GPU上快速训练。
330 10
MiniMind:2小时训练出你的专属AI!开源轻量级语言模型,个人GPU轻松搞定
Tensorflow-GPU训练MTCNN出现错误-Could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED
在使用TensorFlow-GPU训练MTCNN时,如果遇到“Could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED”错误,通常是由于TensorFlow、CUDA和cuDNN版本不兼容或显存分配问题导致的,可以通过安装匹配的版本或在代码中设置动态显存分配来解决。
106 1
Tensorflow-GPU训练MTCNN出现错误-Could not create cudnn handle: CUDNN_STATUS_NOT_INITIALIZED
COMET:字节跳动开源MoE训练加速神器,单层1.96倍性能提升,节省百万GPU小时
COMET是字节跳动推出的针对Mixture-of-Experts(MoE)模型的优化系统,通过细粒度的计算-通信重叠技术,显著提升分布式训练效率,支持多种并行策略和大规模集群部署。
83 9
仅用4块GPU、不到3天训练出开源版GPT-4o,这是国内团队最新研究
【10月更文挑战第19天】中国科学院计算技术研究所提出了一种名为LLaMA-Omni的新型模型架构,实现与大型语言模型(LLMs)的低延迟、高质量语音交互。该模型集成了预训练的语音编码器、语音适配器、LLM和流式语音解码器,能够在不进行语音转录的情况下直接生成文本和语音响应,显著提升了用户体验。实验结果显示,LLaMA-Omni的响应延迟低至226ms,具有创新性和实用性。
246 1
GPU 加速与 PyTorch:最大化硬件性能提升训练速度
【8月更文第29天】GPU(图形处理单元)因其并行计算能力而成为深度学习领域的重要组成部分。本文将介绍如何利用PyTorch来高效地利用GPU进行深度学习模型的训练,从而最大化训练速度。我们将讨论如何配置环境、选择合适的硬件、编写高效的代码以及利用高级特性来提高性能。
1489 1
自研分布式训练框架EPL问题之提高GPU利用率如何解决
自研分布式训练框架EPL问题之提高GPU利用率如何解决

热门文章

最新文章