《构建实时机器学习系统》一1.2 机器学习发展的前世今生

简介:

1.2 机器学习发展的前世今生

1.2.1 历史上机器学习无法调和的难题

早在 2011年,笔者之一彭河森正在谷歌总部实习的时候,机器学习的应用还主要集中在几个互联网巨头手里。当时,机器学习的大规模应用存在以下三个方面的限制。
1.运维工具欠缺
就拿灵活开发流程来说吧,早在 2011年,谷歌、亚马逊等公司开发了内部自有的协同部署工具,而开源协同部署工具 Jenkins才刚刚起步,不少公司对服务器集群的管理还停留在 rsync 和 ssh 脚本阶段。机器学习的应用往往需要多台服务器各司其职、协同作业,这也增加了机器学习开发、部署的难度。这也解释了为什么早期的机器学习软件包(如 Weka 等)都是单机版的,因为服务器配置真的是太麻烦了。
一个机器学习系统的上线运行,需要前端、后端多个组成部分协调工作。在缺乏运维工具的年代,这样的工作量会大得惊人。人力物力的超高成本投入,有限而且不确定的回报率,这些都让机器学习从业人员在实际应用中难以生存。另外一些机器学习专用工具(如 Hadoop)在早年是很少有人懂得其部署步骤的,一般的工程师都不愿意去主动接触它。在这种情况下,两位笔者都曾经为自己的部门搭建过Hadoop 平台。
2.模型尚未标准化
早在 2011 年,机器学习模型仍然是门派林立,SVM、神经网络等大家之作往往需要与作者直接书写的 libsvm 等软件库相对应,而统一标准化语言的软件包才刚刚出现。当时已经有很多线性模型的软件包,但是如果需要使用随机森林,那么还需要再安装其他软件包,不同软件包的用法又是不一样的。这样的非标准化工作大大加重了开发的工作量,减缓了工作的进度。
机器学习软件行业这种“军阀割据”的格局,导致机器学习从业人员必须对每个对应的模型都要进行二次开发。理论上来说,再好的机器学习模型,在实际系统里面,其地位也就应该是一个可以随时替换的小插件。可是实际上,由于二次开发,往往导致一个模型很难替代和更新,只能与系统黏在一起。
3.全栈人才欠缺
如果有了足够多的全栈人才,那么上面的挑战就都不是问题了。可是由于机器学习的门槛比较高,往往需要拥有多年理论训练的人才能胜任相关工作。如果没有多年的工作经验,那么这样的人员往往对系统运维等工作一窍不通。 找到懂机器学习的人容易,找到懂系统运维的人也不难,可是要找到两样都会的人就非常困难了,这样的情况直接导致全栈人才极度缺乏。如果大家有幸能够供职于一些积累了多年机器学习实战经验的大公司,对机器学习系统架构进行“考古”,就会发现这个公司的机器学习系统架构设计大多取决于该公司架构人员的学历背景,每个公司在重模型还是重架构方面都有自己的倾向性。

1.2.2 现代机器学习的新融合

上面三个问题在 2012 年得到了转变,而这一年,也是两位笔者在亚马逊公司相遇的年份。能站在机器学习应用的前线,目睹这一革命的发生,我们感到非常欣喜。我们有幸成为这个大潮中的第一批用户,而且通过实际经历,了解了这一变化的来龙去脉。经过这几年的历练,我们熟悉了机器学习架构应用的相关知识。更重要的是,我们通过广泛的实验和讨论,总结出了对机器学习架构各个组成部分进行选择、预判的规律,让我们可以通过关键点分析对机器学习的浪潮进行预测评估。这也是我们希望能够通过本书与大家进行分享的经验。
从 2012 年到 2016 年,机器学习领域主要发生了以下这些变化。
1.轻量化运维工具成为主流
运维过于复杂,已经成为众多互联网企业的心头之患。这个痛点在 2012 年到 2016 年这几年之间得到了革命性的解决,其中一马当先的急先锋是Docker,Docker 是一款轻量化容器虚拟机生态系统(本书的第6章会详细介绍Docker,并且其应用实例也会贯穿全书)。在 Docker 出现以前,调试部署的工作往往会占用开发人员大量的时间,例如在开发人员电脑上能够成功运行的程序,部署好了之后却不能正常运行。Docker 的出现,使得开发人员电脑上和生产服务器上面的虚拟机镜像内容完全相同,从而彻底杜绝了这种悲剧的发生,大大缩短了开发部署的周期。
与此同时,新近出现的连续化部署 (Continuous Integration,CI)工具,如Jenkins,自动化了机器学习模型的训练和部署流程,大大提高了模型训练的效率。

  1. 机器学习工具标准化
    近几年机器学习软件的出现仍然呈现爆炸式增长的趋势,但是领军软件已经崭露头角。在单机机器学习处理方面,基于 Python 的 Scikit-learn 工具已经成为了监督式机器学习模型的主流。Scikit-learn 具有丰富的机器学习模型模块,并且非常易于进行系统整合,我们在本书的第4章将对其进行详细介绍。与此同时,大数据机器学习方面,Spark 和 MLLib 也成为了主流,MLLib 几乎涵盖了所有的主流分布式机器学习模块,并且非常易于扩展。这些新工具的出现,让开发人员不再需要对模型进行二次开发,从而大大提高了效率。
  2. 全栈人才登上历史舞台
    机器学习领域人才大战正酣,吸引了众多优质青年投身于这一领域。我们非常欣喜地看到众多全栈型人才的出现。所谓全栈型人才,即为上可建模型、 调参数,下可搭集群、做部署,左可开讲座、熬鸡汤,右可面风投、拉项目的“多才多艺”型人才。全栈型人才在组织中可以起到掌控技术全局的作用,可以大大缩短开发所需要的时间,减少系统反复修改带来的浪费。
相关文章
|
17天前
|
机器学习/深度学习 数据采集 人工智能
构建高效机器学习模型的五大技巧
【4月更文挑战第7天】 在数据科学迅猛发展的今天,机器学习已成为解决复杂问题的重要工具。然而,构建一个既精确又高效的机器学习模型并非易事。本文将分享五种提升机器学习模型性能的有效技巧,包括数据预处理、特征工程、模型选择、超参数调优以及交叉验证。这些方法不仅能帮助初学者快速提高模型准确度,也为经验丰富的数据科学家提供了进一步提升模型性能的思路。
|
23天前
|
机器学习/深度学习 搜索推荐 算法
基于机器学习的用户行为分析与个性化推荐系统
传统的用户行为分析和推荐系统常常受限于规则的刻板和模型的简单,无法准确捕捉用户的个性化需求。本文基于机器学习技术,探讨了一种更加灵活、精准的用户行为分析与个性化推荐系统设计方法,通过深度学习模型结合大数据分析,实现了对用户行为的更细致把握和更个性化的推荐服务。
|
21天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型的最佳实践
【4月更文挑战第3天】在数据驱动的时代,构建高效的机器学习模型已成为解决复杂问题的关键。本文将探讨一系列实用的技术策略,旨在提高模型的性能和泛化能力。我们将从数据预处理、特征工程、模型选择、超参数调优到集成学习等方面进行详细讨论,并通过实例分析展示如何在实践中应用这些策略。
16 1
|
1天前
|
机器学习/深度学习 数据采集 人工智能
构建高效机器学习模型的最佳实践
【4月更文挑战第23天】在数据驱动的时代,机器学习已成为创新的核心动力。本文深入探讨了构建高效机器学习模型的关键步骤,包括数据预处理、特征工程、模型选择、训练技巧以及性能评估。通过实例分析与经验总结,旨在为从业者提供一套实用的技术指南,帮助他们在复杂数据环境中提升模型的准确性和泛化能力。
|
7天前
|
机器学习/深度学习 算法 数据处理
构建自定义机器学习模型:Scikit-learn的高级应用
【4月更文挑战第17天】本文探讨了如何利用Scikit-learn构建自定义机器学习模型,包括创建自定义估计器、使用管道集成数据处理和模型、深化特征工程以及调优与评估模型。通过继承`BaseEstimator`和相关Mixin类,用户可实现自定义算法。管道允许串联多个步骤,而特征工程涉及多项式特征和自定义变换。模型调优可借助交叉验证和参数搜索工具。掌握这些高级技巧能提升机器学习项目的效果和效率。
|
8天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从特征工程到模型调优
【4月更文挑战第16天】 在数据驱动的时代,机器学习已成为解决复杂问题的关键工具。本文旨在分享一套实用的技术流程,帮助读者构建高效的机器学习模型。我们将重点讨论特征工程的重要性、选择合适算法的策略,以及通过交叉验证和网格搜索进行模型调优的方法。文章的目标是为初学者提供一个清晰的指南,同时为有经验的实践者提供一些高级技巧。
|
18天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从数据预处理到模型优化
【4月更文挑战第6天】本文聚焦于机器学习模型的开发流程,旨在提供一套系统的方法论以构建出更高效的模型。我们将深入探讨数据预处理的重要性,特征工程的策略,以及如何通过交叉验证和超参数调优来提升模型性能。文章不仅涉及理论分析,还包括了实际案例的代码实现,为读者呈现一个从数据处理到模型部署的完整蓝图。
14 0
|
19天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从数据预处理到模型优化
【4月更文挑战第5天】 在机器学习领域,构建一个高效的模型并非易事。它涉及多个阶段,包括数据预处理、特征工程、模型选择、训练以及最终的评估和优化。本文深入探讨了如何通过精确的数据预处理技巧和细致的特征工程来提升模型性能,同时介绍了几种常见的模型优化策略。我们的目标是为读者提供一套实用的指导方案,帮助他们在面对复杂数据集时能够有效地构建和调整机器学习模型。
|
20天前
|
机器学习/深度学习 算法 数据挖掘
构建高效机器学习模型:从特征工程到模型调优
【4月更文挑战第4天】在数据驱动的时代,构建一个高效的机器学习模型是解决复杂问题的关键。本文将深入探讨特征工程的重要性,并分享如何通过自动化技术进行特征选择与构造。接着,我们将讨论不同的机器学习算法及其适用场景,并提供模型训练、验证和测试的最佳实践。最后,文章将展示如何使用网格搜索和交叉验证来微调模型参数,以达到最优性能。读者将获得一套完整的指南,用以提升机器学习项目的预测准确率和泛化能力。
|
28天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型的策略与优化方法
在机器学习领域,构建一个既高效又准确的预测模型是每个数据科学家追求的目标。本文将探讨一系列策略和优化方法,用于提高机器学习模型的性能和效率。我们将从数据处理技巧、特征选择、算法调优以及模型评估等方面进行详细讨论。特别地,文章将重点介绍如何通过集成学习和自动化模型调优工具来提升模型的泛化能力。这些技术不仅能帮助减少过拟合的风险,还能确保模型在未知数据集上的表现更加鲁棒。