为什么5G能比4G快十倍?

简介:

距离2020年5G正式商用的期限,越来越近。目前,各大厂商都在加快自己在5G技术上的测试工作。记得在上周,华为与沃达丰共同完成了5G毫米波 室外现场测试,实现单用户设备20Git/s的峰值传输速度。不过,按照预期,最终5G的传输速率将可实现1Gb/s,比4G快十倍以上,要如何实现?这 其中的关键技术在于5G采用了毫米波。

1. 什么是毫米波

什么是毫米波?这会是5G实现高速传输的关键所在吗?实际上,毫米波是指波长在1~10毫米的电磁波,其频率大约在30GHz~300GHz之间。它位于微波与远红外波相交叠的波长范围,因而兼具两种波普的特点。理论上讲,毫米波是光波向低频的发展与微波向高频的延伸。

从通信原理来看,无线通信最大信号带宽约在载波频率的5%左右,也就是说,载波频率越高,其可实现的信号带宽也就越大。此外,在毫米波频段 中,28GHz与60GHz是最有望应用在5G通信的两个频段。其中,28GHz的可用频谱带宽可达1GHz,60GHz每个信道的可用信号带宽则可达 2GHz。

与5G通信相比,4G-LTE的频段最高频率约在2GHz左右,因而其可用频谱带宽只有100MHz;使用毫米波频段,频谱带宽则可翻10倍,传输速率也将更快。因此,5G将不仅仅意味着10秒传输一部1GB电影,其还将支撑例如云端游戏、虚拟现实等更多的应用。

2. 宝贵的频带资源

众说周知,无线通信依托于电磁波传播,最宝贵的资源莫过于频带。目前,电信业者已开始研究毫米波技术,以便找到最适合移动应用的频率范围。为了统一 全球的毫米波频率标准,国际电信联盟(ITU)在近期的世界无线电通讯大会结束后,公布了24GHz到86GHz之间的全球可用频率的建议列表,最后 28GHz、39GHz与73GHz三个频带逐渐脱颖而出。

基于28GHz在美国、韩国与日本的可用性,加之美国电信业者早期现场测试的投入,该频谱无论是否成为国际标准,都可能直接成为美国的移动技术应 用。此外,韩国于2018年奥运展示5G技术的目标,也可能在标准组织确定5G标准之前,率先推动28GHz技术用于消费型产品上。尽管目前仍无法确认 28GHz是否可以广泛用于5G应用,但该频率在现阶段绝对非常重要。

在进行28GHz相关研究的同时,E波段(E-band)频率在近几年也引起了移动通讯领域的关注。开篇所说的华为与沃达丰,正是在E-Band微波上对5G进行室外现场测试。此外,区分73GHz与28GHz、39GHz三者关系的其中一项特性,就是可用的连续带宽。

73GHz中有2GHz的连续带宽可用于移动通讯,这是拟议频率频谱中范围最广的;28GHz仅提供850MHz的带宽;在美国,39GHz附近就 有两个频带提供1.6GHz与1.4GHz带宽。此外,根据Shannon定律,即更高的带宽代表更高的数据传输量,73GHz与另外两个频率相较更具优 势。

3. 毫米波的特性

说了这么多,毫米波又具备哪些特性呢?从理论上讲,毫米波是光波向低频的发展与微波向高频的延伸。由于毫米波的独有特性,使其在传播时不易受到自然光和热辐射源的影响,不光是通信,其还可应用于雷达、制导等诸多领域。

说了这么多,毫米波又具备哪些特性呢?从理论上讲,毫米波是光波向低频的发展与微波向高频的延伸,可通过空气就可传输信号。由于毫米波的独有特性,使其在传播时不易受到自然光和热辐射源的影响,不光是通信,其还可应用于雷达、制导等诸多领域。

例如利用大气窗口的毫米波频率,可实现大容量的卫星到地面通信,利用高分辨率的毫米波辐射计遥感气象参数,还可以使用射电天文望远镜探测宇宙空间的辐射波谱,从而推断星际物质的成分。现在,对于网络信号的传输,毫米波技术也产生了巨大助力。

于用户而言,使用毫米波技术的无线宽带,其速度远高于从有线电视公司或电话公司获得的宽带速度。尽管现在已有WIFI、LIFI等上网技术,但通过空气传输信号的毫米波技术无疑是另一种不错的替代方案。

4. 5G通信的关键所在

当然,事物都有两面性,毫米波亦是如此。尽管毫米波技术用途广泛,但其也不可避免地存有短板。例如其传播距离最多只能在200米左右,无法实现远距离传输,又或是毫米波的穿透能力不强,在空气中衰减较大,遇到墙或者其他阻碍就无法发挥作用。

不过,毫米波在空气中传输衰减大也是可以为我们所用的。只要想办法提升毫米波的传输距离,出于成本考虑,距离越大所需建设的网络基站就越少,也就越 节省成本。因此,在网络技术传输方面,毫米波尚不能单独使用,需与其他技术结合形成叠加型网络,共同实现对网络信号的传输功能。

若能使用毫米波小基站,则有利于解决宏基站和小基站切换频繁,而造成用户体验差的问题。宏基站可以作为移动通信的控制平面在低频段工作,毫米波小基站可作为移动通信的用户数据平面在高频段工作,二者配合的相得益彰。 

此外,用毫米波信道作为移动通信回程,可根据数据流量的实际情况随时部署新的小基站,也可在闲置或轻流量时段关闭小基站。部署灵活,还可降低能耗, 节约资源。毫米波的另一个特点就是天线的物理尺寸可以较小,原因在于天线的物理尺寸正比于波段的波长,因此硬件厂商可以更方便的在移动设备上配备毫米波的 天线阵列,从而实现各种MIMO技术。

尽管目前,我们还不清楚5G技术未来究竟如何发展,但可以确定的是毫米波因其特有的优势,无疑将成为5G网络发展中的关键技术。尽管毫米波存在着传输距离与穿透力问题上的缺陷,但其应用前景却是极为广阔的。下一步,只需确定移动通讯要使用哪一种毫米波频带。


原文发布时间为: 2016年8月10日

本文作者:物联网智库

本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。

相关文章
|
1月前
|
边缘计算 物联网 5G
4G 网络跟 5G 的区别
4G 网络跟 5G 的区别
16 0
|
3月前
|
监控 安全 物联网
相比4G,5G有那些优势满足工业4.0的技术需求
5G凭借其超高速率、超低延迟、高可靠性、大连接数等核心技术优势,有力满足了工业4.0对于实时通信、灵活生产、高效自动化及大规模物联网应用的需求。
42 0
|
11月前
|
5G Shell 流计算
【无线网络】下载速度:2G、3G、4G和5G到底意味着什么?
【无线网络】下载速度:2G、3G、4G和5G到底意味着什么?
|
编解码 移动开发 大数据
4G LTE/LTE-A系统的主要性能特点 | 带你读《5G UDN(超密集网络)技术详解》之四
宏基站 eNB 和微基站 eNB 配置提供的服务小区之间的主要区别是:系统 容量和无线覆盖的区域大小不同,只有当它们以不同方式、不同类型搭配,混 合地部署组网在一起时,才能形成上述所谓的“同构宏蜂窝”与“异构微蜂 窝”网络之间的诸多差别。
|
传感器 边缘计算 安全
分支机构的游戏规则改变者:Wi-Fi 6、4G、5G和SD-WAN
如今,云计算服务的使用量不断增长,并且正在改变分支机构在WAN处理数据的模式和数量,但是无线蜂窝服务以及智能化的软件定义广泛网(SD-WAN)可以帮助保持流量和成本的一致性。
|
传感器 人工智能 自动驾驶
4G让互联网移动,5G让互联网实时
4G让互联网移动,5G让互联网实时
163 0
4G让互联网移动,5G让互联网实时
|
人工智能 编解码 物联网
5·17电信日观察:5G发展超4G同期 新基建带来哪些新潜力?
5·17电信日观察:5G发展超4G同期 新基建带来哪些新潜力?
144 0
5·17电信日观察:5G发展超4G同期 新基建带来哪些新潜力?
|
传感器 人工智能 编解码
华为「尽全力」发布了P50系列:原生搭载鸿蒙,5G改4G
P50 是一款迟到四个月的旗舰,华为为了让它实现一直以来的水准可谓竭尽所能。
133 0
华为「尽全力」发布了P50系列:原生搭载鸿蒙,5G改4G
每天新增23万:4G用户是如何“被5G”的
很多用户不换5G手机,却成为了5G用户。
|
物联网 数据挖掘 5G
揭秘:900亿5G大单全部落地,但商用初期的5G各方面都慢于4G
不论从运营商投资节奏、基站建设规模,还是从用户增速来看,5G在初期商用的两年中各方面都慢于当年4G。当然,5G对经济社会的影响力远远超过4G是没有悬念的,5G投资规模、基础设施规模和用户规模远远超过4G也没有悬念,从这个角度来看,5G大规模的投资还没有到来,5G的投资将是一个“长跑”过程。