翻译小组 关注
手机版
  1. 云栖社区>
  2. 翻译小组>
  3. 博客>
  4. 正文

机器学习的入门“秘籍”

【方向】 2017-09-12 15:52:51 浏览1630 评论0 发表于: 翻译小组

云栖社区 python 深度学习 算法 神经网络

摘要: 机器学习已经成为当下最火热的技术之一,对于初学者来说,如何快速入门机器学习是至关重要的。本文属于入门级宝典,高手请绕道!

更多深度文章,请关注:https://yq.aliyun.com/cloud


由于人工智能的发展,机器学习越来越受到大家的追捧。很多新的计算机科学家和工程师开始跨入机器学习这个美好的世界。不幸的是,理论,算法,应用,论文,书籍,视频等的数量是如此之大,以至于无法清楚地了解到底那些才是他们想要/需要学习提高他/她的技能的知识。

在这篇文章中,我想分享一下我的经验,提出一条可行的途径,快速学习基本概念,并准备好深入讨论最复杂的话题。当然这只是个人建议:每个朋友都可以根据自己的经验,选择更多地关注一些更有趣的话题。毕竟适合自己才是最好的路!

先决条件(基础)

机器学习是非常依赖数学的一门科学。这不是一个可以选择的选项,而是必选项,因为没有数学就没有机器学习,数学是一个不可抛弃的根本支柱。如果您是计算机工程师,每天使用UMLORM,设计模式和许多其他软件工程工具/技术,请闭上眼睛,忘记几乎所有内容。这并不意味着所有的这些概念都不重要。但机器学习需要一种不同的方法。Python在这个领域越来越受欢迎的原因之一就是它的原型设计速度。在机器学习中,一种允许您使用几行代码(无类,接口和所有其他OO基础架构)对算法进行建模的语言是绝对要掌握的。无疑,Python是最佳的选择,如果你有很深厚的Python基础,那么这将成为你的优势。

微积分,概率理论和线性代数是几乎任何算法所必需的数学技能。如果你已经有了很好的数学背景,你可以跳过这个部分,选择刷新一些重要的概念是一个不错的主意。考虑到数学理论,我不鼓励从头开始进行通透性学习。在完成特定的任务时也可以突击式的学习它们,数学的使用要由浅入深,一开始就注重简单的任务。

另外机器学习,有很多好的在线资源(如CourseraKhan AcademyUdacity)。学习过程中尽量采用适合自己学历背景的务实方法。我的建议是使用一个简短的纲要,其中最重要的概念需要一一自己亲自搞明白,并且在需要的时候通过搜索和研究继续深入的学下去。这不是一个非常系统的方法,但替代方案有一个显着的缺点:大量的数学概念可以阻止和迷失所有没有深厚学术背景的人。

一个入门的武林秘籍

概率论:

1.离散和连续的随机变量(Discrete and continuous random variables

2.重要的分布(伯努利,分类,二项式,正态,指数,泊松,贝塔,伽马)

3.贝叶斯统计(Bayes statistics

4.相关和协方差(correlation and covariance

线性代数:

1.向量和矩阵(Vectors and matrics

2.矩阵的决定因素(determinant of a matrix

3.特征向量和特征值(eigenvectors and eigenvalues

4.矩阵分解(像SVD)(Matrix factorization

微积分:

1.函数

2.积分

网上有很多免费资源,如:

维基百科也是一个非常好的资源,许多公式,理论和定理都以清晰易懂的方式解释。

机器学习必备技能:

1.特征工程:

进入机器学习的第一步是了解如何测量和提高数据集的质量。管理分类和缺失的特征、归一化和维数降低(PCAICANMF)是可以显着提高任何算法性能的基本技术。研究如何将数据集分为训练集和测试集以及如何采用交叉验证,而不是经典测试方法。如果想清楚的了解什么是特征工程,点击

2.NumpyPython的数学之王!

使用Python时,Numpy不仅仅是一个库。它是几乎任何机器学习实现的基础,绝对有必要了解它的工作原理,重点要关注矢量化和广播机制的概念、利用多线程和SIMDMIMD架构的优势。通过掌握这些原理概念,可以加快大多数算法的学习过程。官方文件完整,但我也建议这些资源:

3.数据可视化

虽然它不是纯粹的机器学习主题,重要的是要知道如何可视化数据集。Matplotlib可能是最佳的解决方案,它易于使用,并允许绘制不同类型的图表。BokehSeaborne提供了非常有趣的选择。没有必要对所有软件包有全面的了解,但是了解每个软件包的优点/弱点是有用的,因此能够在需要时选择正确的软件包。

学习Matplotlib的一个很好的资源是:

4.线性回归:

线性回归是最简单的模型之一,可以考虑将其作为解决优化问题的首选,它可以解决最小化均方误差的优化问题。我建议将其研究为贝叶斯问题,其中使用先验概率表示参数(例如,高斯分布),优化成为MLE(最大似然估计)。即使它似乎更复杂,这种方法提供了一个新的思路,可以和许多其他更复杂的模型共享。

有关贝尔斯统计的非常有用的介绍可在Coursera上获得:

我建议你选择这些书:

5.线性分类:

逻辑回归通常是最好的起点。这也是学习一些信息理论的好机会,了解熵、交叉熵和互信息等概念。分类交叉熵是深度学习分类中最稳定的成本函数,简单的逻辑回归可以展示如何加快学习过程(与均方误差相比)。另一个重要的话题是正则化(RidgeLassoElasticNet)。有很多次,它被认为是提高模型准确性的深奥方式,但它的真实含义更加精确,应该通过一些具体的例子予以理解。我建议初学者可以以逻辑回归作为一个简单的神经网络搭建的开始,可视化(对于2D示例)如何权重向量在学习过程中移动。

超参数网格搜索方法是一个不错的方法。Grid Search可以评估不同超参数集的性能,而不是完全意识到不同的值。因此,工程师可以将注意力集中在产生最高精度的组合上。

6.支持向量机(SVM):

支持向量机提供了不同的分类方法(线性和非线性)。该算法非常简单,学生只需要具有基础的几何知识就可以学习。然而,了解kernel-SVM的工作原理是非常有用,因为它们可以帮助你避免在线性方法的任务中频繁出现失败。

一些有用的免费资源:

7.决策树:

决策树提供了另一种分类和回归方法。一般来说,它们不是非常复杂问题的首选,但它们提供了完全不同的方法,即使是非技术人员也可以很容易地理解,并且可以在会议或官方演示中进行可视化。

8.快速浏览集成学习(Ensemble learning):

在了解了决策树之后,研究如何组合树来提高整体准确度的方法是有用的。随机森林,梯度提升回归树和AdaBoost是复杂性比较低的强大算法。Scikit-Learn提供了最常见的实现,但是如果您想要充分利用这些算法,我建议你花一些时间研究XGBoost,这是一个分布式框架,可以与CPUGPU一起工作,加快训练过程,即使是非常庞大的数据集。

9.聚类:

研究聚类方法,依我的意见,最好的做法是研究高斯混合算法(基于EM期望最大化)。即使K-Means也比较简单(但必须进行研究),高斯混合提供了一种纯贝叶斯方法,这对许多其他类似的任务很有用。其他必须研究的聚类算法还包括分层聚类光谱聚类DBSCAN。了解基于实例的学习的思想也很有用,例如研究了k-Nearest Neighbors算法,可以用于监督学习和无监督学习任务。

光谱聚类的免费资源是:

10.神经网络:

神经网络是深度学习的基础,应该花单独的时间进行研究。但是,我认为了解PerceptronMulti-Layer PerceptronBackpropagation算法的概念对神经网络的学习是很有用的。Scikit-learn提供了一个非常简单的神经网络,但是,它是一个好的开始,接着就是了解Keras,这是基于高层次的框架TensorflowTheanoCNTK的深度学习包,允许模拟和训练神经网络。

一些好的神经网络资源:

市场上最好的深度学习书可能是:

  • Goodfellow I.Bengio Y.Courville A.Deep LearningThe MIT Press

希望本文能够帮助到那些打算进入机器学习领域的朋友们!

本文由北邮@爱可可-爱生活老师推荐,@阿里云云栖社区组织翻译。

文章原标题《An annotated path to start with Machine Learning

作者:bonaccprso  人工智能软件工程师,数据科学家,技术传播与顾问。

博客:https://www.bonaccorso.eu

译者:袁虎 审阅:主题曲哥哥

文章为简译,更为详细的内容,请查看原文

本文由用户为个人学习及研究之目的自行翻译发表,如发现侵犯原作者的版权,请与社区联系处理yqgroup@service.aliyun.com

用云栖社区APP,舒服~

【云栖快讯】浅析混合云和跨地域网络构建实践,分享高性能负载均衡设计,9月21日阿里云专家和你说说网络那些事儿,足不出户看直播,赶紧预约吧!  详情请点击

网友评论

阿里云机器学习是基于阿里云分布式计算引擎的一款机器学习算法平台。用户通过拖拉拽的方式可视化的操作组件来进行试验,...

用于实时预测用户对物品偏好,支持企业定制推荐算法,支持A/B Test效果对比

帮助您基于阿里云构建出一个隔离的网络环境。您可以完全掌控自己的虚拟网络,如选择自有 IP 地址范围、划分网段、配...

为您提供简单高效、处理能力可弹性伸缩的计算服务,帮助您快速构建更稳定、安全的应用,提升运维效率,降低 IT 成本...