解析深度学习的未来十大趋势

简介:

本周,我在加拿大蒙特利尔参加了NIPS(Neural Information Processing Systems,神经信息处理系统)2015年论坛。这是一次令人难以置信的经历,就像从信息海洋中汲水一样。特别感谢我的雇主Dropbox派遣我参加这场会议(我们正在招人)。

这里是本周我注意到的一些趋势;注意到这些趋势更偏向于深度学习和强化学习(reinforcement learning),因为它们是我在这次论坛中参加的主要部分。

神经网络框架变得越来越复杂而精密

在感知、语言翻译等等方面的大部分最先进的神经网络框架正在发展并且不在仅仅关于简单前馈式(feed forward)框架或者卷积式框架(convolutional)。特别地,它们正在混合并匹配不同的神经网络技术如LSTMs、卷积、自定义目标函数、多皮层柱(multiple cortical columns)等等。

所有最酷的系统都在使用 LSTMs

大部分最先进的系统都将LSTMs纳入到系统中,以使系统具有捕捉重复模式的记忆力。

“注意力模型”在升温

一些系统,但不是全部,开始放到“注意力模型”的背景中,或者说让神经网络在完成任务的过程中试图学习在哪里放置其“注意力”。这些还不是一个正规神经网络流水线中的一部分,但是已经时不时的出现在模型中了。

神经图灵机仍然有趣,但并没有影响到实际工作

神经网络图灵机(Neural Turing Machines)的研究,或者说能够有差异地训练一个神经网络来学习算法,仍然有趣,但是还没有应用到实际工作中。它们还很复杂并且目前只能解决玩具问题(toy problems)。

计算机视觉和自然语言处理,会变得几乎不可分离——在电脑视觉和自然语言处理的领域的深度学习正在互相融合卷积神经网络第一次出现是在电脑视觉中,但是现在用于一些自然语言处理(NLP)中了,LSTMs和主流对递归神经网络使用的倾向性,第一次做出引人注目的成果是在NLP任务中——如序列到序列的翻译(sequence-to-sequence translation),然而现在通过修剪被纳入到电脑视觉神经网络任务中。

另外,电脑视觉和NLP的交叉部分再加上在如图片捕捉任务中使用到的常见的嵌入(embeddings)技术,还很热门。

符号微分法越来越重要

随着神经网络框架和它们的目标函数可以自定义,同时也变得越来越复杂,人为手动提取它们反向传播中的梯度变得越来越难,也容易出错。最新的工具包如谷歌的TensorFlow有了自动符号微分,所以你可以构建你的框架和目标函数,在训练过程中工具包会在众多的碎片中自动地找出正确的微分来保证误差梯度可以反向传播。

神经网络模型压缩带来了越来越多令人惊喜的结果

多个团队展示了不同的方式来剧烈地压缩一个训练过的模型的权重数量:二值化(binarization)、固定浮点(fixed floating point)、迭代剪枝(iterative pruning)和微调措施(fine tuning steps)等等更多。

这些方法为许多应用带来了可能:有可能将很复杂的模型适配到手机上,例如,与云端无延迟的对话来得到结果,如语音识别。另外,如果我们能够高帧率的快速查询一个模型(因为它的空间和计算运行时间成本很低,如30 FPS),那么在移动装置上使用复杂的、训练好的神经网络模型来完成接近实时的新类型电脑视觉任务就有可能了。

NIPS展示了这些压缩技术,但是我没有看到任何人应用它们。我觉得我们在2016年可能见到相应的应用。

深度学习和强化学习的交叉在继续

虽然今年NIPS没有展示关于强化学习的主要结果,但是深度强化学习研究讨论室只剩下站立的地方,他们展示了深度神经网络和强化学习的计划能力两者结合给人带来的令人兴奋的可能。

在这个领域一些令人兴奋的工作正在发生,如端对端机器人,使用深度学习和强化学习来完成原始传感器数据到实际动作执行器的直接过度。我们正从过去的只是分类一步步发展到试图理解如何在方程中加入计划和行动。还有更多的工作要做,但是早期工作很令人兴奋。

如果你没使用批量归一化,那么现在应该开始了

批量归一化(batch normalization)正被考虑成为神经网络工具包的一个标准部分,并在论坛的整体工作过程中作为参考(reference)。

神经网络和产品应用,应该携手同行

你需要让研究人员创造新的神经网络方法,而且也有途径将这些方法快速扩展到实际应用产品中。谷歌的TensorFlow是数据库中很少做到这一点的平台之一:研究人员可以快速创造新的网络拓扑如图像,然后这些能够扩展在不同的配置中——如使用像Python或C++主流程序语言的单个设备、多个设备或者是移动设备中。

然而,注意到TensorFlow还在早期阶段;Caffe现在倒是能使用。TensorFlow的单装置表现不如其他的构架;谷歌也宣称不久他们会公布一个使用Kubernetes和gRPC的分布式版本但是分布式训练尚未发挥作用;并且使用TensorFlow目前还不能在亚马逊的AWS上运行。尽管如此,TensorFlow的前景可期。


原文发布时间为: 2015年12月24日

本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。

相关文章
|
11月前
|
机器学习/深度学习 存储 算法
深度学习经典网络解析目标检测篇(二):Fast R-CNN
R-CNN网络训练、测试繁琐:R-CNN网络训练过程分为ILSVRC 2012样本下有监督预训练、PASCAL VOC 2007该特定样本下的微调、20类即20个SVM分类器训练、20类即20个Bounding-box回归器训练,该训练流程繁琐复杂;同理测试过程也包括提取建议框、提取CNN特征、SVM分类和Bounding-box回归等步骤,过于繁琐;
81 0
|
11月前
|
机器学习/深度学习 存储 算法
深度学习经典网络解析目标检测篇(一):R-CNN
目标检测(Object Detection) 就是一种基于目标几何和统计特征的图像分割,它将目标的分割和识别合二为一,通俗点说就是给定一张图片要精确的定位到物体所在位置,并完成对物体类别的识别。其准确性和实时性是整个系统的一项重要能力。
433 0
|
11月前
|
机器学习/深度学习 人工智能 计算机视觉
深度学习经典网络解析图像分类篇(七):ResNet
 如果说你对深度学习略有了解,那你一定听过大名鼎鼎的ResNet,正所谓ResNet 一出,谁与争锋?现如今2022年,依旧作为各大CV任务的backbone,比如ResNet-50、ResNet-101等。ResNet是2015年的ImageNet大规模视觉识别竞赛(ImageNet Large Scale Visual Recognition Challenge, ILSVRC)中获得了图像分类和物体识别的冠军,是中国人何恺明、张祥雨、任少卿、孙剑在微软亚洲研究院(AI黄埔军校)的研究成果。
327 0
|
11月前
|
机器学习/深度学习 Go 网络架构
深度学习经典网络解析图像分类篇(六):GoogLeNet
 GoogLeNet是2014年Christian Szegedy提出的一种全新的深度学习结构,在这之前的AlexNet、VGG等结构都是通过增大网络的深度(层数)来获得更好的训练效果,但层数的增加会带来很多负作用,比如过拟合、梯度消失、梯度爆炸等。
158 0
|
11月前
|
机器学习/深度学习 存储 人工智能
深度学习经典网络解析图像分类篇(五):VGG
 VGGNet是在ImageNet Challenge 2014在定位和分类过程中分别获得了第一名和第二名的神经网络架构。VGGNet是牛津大学计算机视觉组和DeepMind公司的研究员一起研发的深度卷积神经网络。VGG主要探究了卷积神经网络的深度和其性能之间的关系,通过反复堆叠3×3的小卷积核和2×2的最大池化层,VGGNet成功的搭建了16-19层的深度卷积神经网络。
313 0
|
11月前
|
机器学习/深度学习 PyTorch 算法框架/工具
深度学习经典网络解析图像分类篇(四):DenseNet
DenseNet是CVPR2017年的Best Paper,它脱离了加深网络层数(ResNet)和加宽网络结构(Inception)来提升网络性能的定式思维,从特征的角度考虑,通过特征重用和旁路(Bypass)设置,既大幅度减少了网络的参数量,又在一定程度上缓解了gradient vanishing问题的产生.结合信息流和特征复用的假设,DenseNet当之无愧成为2017年计算机视觉顶会的年度最佳论文。
290 0
|
11月前
|
机器学习/深度学习 数据可视化 C++
深度学习经典网络解析图像分类篇(三):ZFNet
 ZFNet在2013年 ILSVRC 图像分类竞赛获得冠军,错误率11.19% ,比去年的AlexNet降低了5%,ZFNet是由 Matthew D.Zeiler 和 Rob Fergus 在 AlexNet 基础上提出的大型卷积网络。ZFNet解释了为什么卷积神经网络可以在图像分类上表现的如此出色,以及研究了如何优化卷积神经网络。ZFNet提出了一种可视化的技术,通过可视化,我们就可以了解卷积神经网络中间层的功能和分类器的操作,这样就就可以找到较好的模型。ZFNet还进行消融实验来研究模型中的每个组件,它会对模型有什么影响。
137 0
|
8天前
|
机器学习/深度学习 API 语音技术
|
10天前
|
机器学习/深度学习 监控 安全
智能化视野下的守卫者:基于深度学习的图像识别技术在智能监控领域的革新应用
【4月更文挑战第9天】 随着人工智能技术的飞速发展,深度学习已经成为了推动计算机视觉进步的重要力量。尤其在智能监控领域,基于深度学习的图像识别技术正逐步转变着传统监控系统的功能与效率。本文旨在探讨深度学习技术如何赋能智能监控,提高对场景理解的准确性,增强异常行为检测的能力,并讨论其在实际部署中所面临的挑战和解决方案。通过深入分析,我们揭示了深度学习在智能监控中的应用不仅优化了安全防范体系,也为城市管理和公共安全提供了有力的技术支持。
|
10天前
|
机器学习/深度学习 算法 数据处理
深度学习在图像识别中的创新应用
【4月更文挑战第9天】 随着人工智能技术的飞速发展,深度学习已成为推动计算机视觉领域进步的关键技术之一。特别是在图像识别任务中,深度学习模型已经展现出超越传统算法的性能。本文将深入探讨深度学习在图像识别领域的最新进展,包括卷积神经网络(CNN)的变体、数据增强技术以及迁移学习等策略。通过对这些技术的综合运用,我们能够实现对复杂图像数据的高效识别和分类,进一步拓展了深度学习在实际应用中的可能性。
12 1

推荐镜像

更多