如何用200行Python代码“换脸”

简介:

介绍

本文将介绍如何编写一个只有200行的Python脚本,为两张肖像照上人物的“换脸”。

这个过程可分为四步:

  • 检测面部标记。

  • 旋转、缩放和转换第二张图像,使之与第一张图像相适应。

  • 调整第二张图像的色彩平衡,使之与第一个相匹配。

  • 把第二张图像的特性混合在第一张图像中。

完整的源代码可以从这里下载: https://github.com/matthewearl/faceswap/blob/master/faceswap.py

图片描述

1.使用dlib提取面部标记

该脚本使用dlib的Python绑定来提取面部标记:

图片描述

用Dlib实现了论文One Millisecond Face Alignment with an Ensemble of Regression Trees中的算法(http://www.csc.kth.se/~vahidk/papers/KazemiCVPR14.pdf,作者为Vahid Kazemi 和Josephine Sullivan) 。算法本身非常复杂,但dlib接口使用起来非常简单:

 
  1. PREDICTOR_PATH = "/home/matt/dlib-18.16/shape_predictor_68_face_landmarks.dat" 
  2.  
  3. detector = dlib.get_frontal_face_detector() 
  4. predictor = dlib.shape_predictor(PREDICTOR_PATH) 
  5.  
  6. def get_landmarks(im): 
  7.     rects = detector(im, 1
  8.  
  9.     if len(rects) > 1
  10.         raise TooManyFaces 
  11.     if len(rects) == 0
  12.         raise NoFaces 
  13.  
  14.     return numpy.matrix([[p.x, p.y] for p in predictor(im, rects[0]).parts()]) 

get_landmarks()函数将一个图像转化成numpy数组,并返回一个68 x2元素矩阵,输入图像的每个特征点对应每行的一个x,y坐标。

特征提取器(predictor)要一个粗糙的边界框作为算法输入,由传统的能返回一个矩形列表的人脸检测器(detector)提供,其每个矩形列表在图像中对应一个脸。

为了构建特征提取器,预训练模型必不可少,相关模型可从dlib sourceforge库下载(http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2)。

2.用普氏分析(Procrustes analysis)调整脸部

现在我们已经有了两个标记矩阵,每行有一组坐标对应一个特定的面部特征(如第30行给出的鼻子的坐标)。我们现在要搞清楚如何旋转、翻译和规模化第一个向量,使它们尽可能适合第二个向量的点。想法是,可以用相同的变换在第一个图像上覆盖第二个图像。

把它们更数学化,寻找T,s和R,令下面这个表达式的结果最小:

图片描述

R是个2 x2正交矩阵,s是标量,T是二维向量,pi和qi是上面标记矩阵的行。

事实证明,这类问题可以用“常规普氏分析法” (Ordinary Procrustes Analysis) 解决:

 
  1. def transformation_from_points(points1, points2): 
  2.     points1 = points1.astype(numpy.float64) 
  3.     points2 = points2.astype(numpy.float64) 
  4.  
  5.     c1 = numpy.mean(points1, axis=0
  6.     c2 = numpy.mean(points2, axis=0
  7.     points1 -= c1 
  8.     points2 -= c2 
  9.  
  10.     s1 = numpy.std(points1) 
  11.     s2 = numpy.std(points2) 
  12.     points1 /= s1 
  13.     points2 /= s2 
  14.  
  15.     U, S, Vt = numpy.linalg.svd(points1.T * points2) 
  16.     R = (U * Vt).T 
  17.  
  18.     return numpy.vstack([numpy.hstack(((s2 / s1) * R, 
  19.                                        c2.T - (s2 / s1) * R * c1.T)), 
  20.                          numpy.matrix([0., 0., 1.])]) 

代码分别实现了下面几步:

  1. 将输入矩阵转换为浮点数。这是之后步骤的必要条件。

  2. 每一个点集减去它的矩心。一旦为这两个新的点集找到了一个最佳的缩放和旋转方法,这两个矩心c1和c2就可以用来找到完整的解决方案。

  3. 同样,每一个点集除以它的标准偏差。这消除了问题的组件缩放偏差。

  4. 使用Singular Value Decomposition计算旋转部分。可以在维基百科上看到关于解决正交普氏问题的细节(https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem)。

  5. 利用仿射变换矩阵(https://en.wikipedia.org/wiki/Transformation_matrix#Affine_transformations)返回完整的转化。

之后,结果可以插入OpenCV的cv2.warpAffine函数,将图像二映射到图像一:

 
  1. def warp_im(im, M, dshape): 
  2.     output_im = numpy.zeros(dshape, dtype=im.dtype) 
  3.     cv2.warpAffine(im, 
  4.                    M[:2], 
  5.                    (dshape[1], dshape[0]), 
  6.                    dst=output_im, 
  7.                    borderMode=cv2.BORDER_TRANSPARENT, 
  8.                    flags=cv2.WARP_INVERSE_MAP) 
  9.     return output_im 

图像对齐结果如下:

图片描述

COLOUR_CORRECT_BLUR_FRAC = 0.6
LEFT_EYE_POINTS = list(range(42, 48))
RIGHT_EYE_POINTS = list(range(36, 42))

如果我们试图直接覆盖面部特征,很快就会看到一个问题:

图片描述

两幅图像之间不同的肤色和光线造成了覆盖区域的边缘不连续。我们试着修正:

 
  1. COLOUR_CORRECT_BLUR_FRAC = 0.6 
  2. LEFT_EYE_POINTS = list(range(42, 48)) 
  3. RIGHT_EYE_POINTS = list(range(36, 42)) 
 
  1. def correct_colours(im1, im2, landmarks1): 
  2.     blur_amount = COLOUR_CORRECT_BLUR_FRAC * numpy.linalg.norm( 
  3.                               numpy.mean(landmarks1[LEFT_EYE_POINTS], axis=0) - 
  4.                               numpy.mean(landmarks1[RIGHT_EYE_POINTS], axis=0)) 
  5.     blur_amount = int(blur_amount) 
  6.     if blur_amount % 2 == 0: 
  7.         blur_amount += 1 
  8.     im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0) 
  9.     im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0) 
  10.  
  11.     # Avoid divide-by-zero errors. 
  12.     im2_blur += 128 * (im2_blur <= 1.0) 
  13.  
  14.     return (im2.astype(numpy.float64) * im1_blur.astype(numpy.float64) / 
  15.                                                 im2_blur.astype(numpy.float64)) 

结果是这样:

图片描述

此函数试图改变图像2的颜色来匹配图像1。它通过用im2除以im2的高斯模糊,然后乘以im1的高斯模糊。这里的想法是用RGB缩放校色,但是不是用所有图像的整体常数比例因子,每个像素都有自己的局部比例因子。

用这种方法两图像之间光线的差异只能在某种程度上被修正。例如,如果图像1是从一边照亮,但图像2是均匀照明的,色彩校正后图像2也会出现未照亮边暗一些的现象。

也就是说,这是一个相当粗糙的办法,而且解决问题的关键是一个适当的高斯内核大小。如果太小,第一个图像的面部特征将显示在第二个图像中。过大,内核之外区域像素被覆盖,并发生变色。这里的内核用了一个0.6 *的瞳孔距离。

4.把第二张图像的特性混合在第一张图像中

用一个遮罩来选择图像2和图像1的哪些部分应该是最终显示的图像:

图片描述

值为1(白色)的地方为图像2应该显示出的区域,值为0(黑色)的地方为图像1应该显示出的区域。值在0和1之间为图像1和图像2的混合区域。

这是生成上面那张图的代码:

 
  1. LEFT_EYE_POINTS = list(range(42, 48)) 
  2. RIGHT_EYE_POINTS = list(range(36, 42)) 
  3. LEFT_BROW_POINTS = list(range(22, 27)) 
  4. RIGHT_BROW_POINTS = list(range(17, 22)) 
  5. NOSE_POINTS = list(range(27, 35)) 
  6. MOUTH_POINTS = list(range(48, 61)) 
  7. OVERLAY_POINTS = [ 
  8.     LEFT_EYE_POINTS + RIGHT_EYE_POINTS + LEFT_BROW_POINTS + RIGHT_BROW_POINTS, 
  9.     NOSE_POINTS + MOUTH_POINTS, 
  10. FEATHER_AMOUNT = 11 
 
  1. def draw_convex_hull(im, points, color): 
  2.     points = cv2.convexHull(points) 
  3.     cv2.fillConvexPoly(im, points, color=color) 
  4.  
  5. def get_face_mask(im, landmarks): 
  6.     im = numpy.zeros(im.shape[:2], dtype=numpy.float64) 
  7.  
  8.     for group in OVERLAY_POINTS: 
  9.         draw_convex_hull(im, 
  10.                          landmarks[group], 
  11.                          color=1) 
  12.  
  13.     im = numpy.array([im, im, im]).transpose((1, 2, 0)) 
  14.  
  15.     im = (cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0) > 0) * 1.0 
  16.     im = cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0) 
  17.  
  18.     return im 
  19.  
  20. mask = get_face_mask(im2, landmarks2) 
  21. warped_mask = warp_im(mask, M, im1.shape) 
  22. combined_mask = numpy.max([get_face_mask(im1, landmarks1), warped_mask], 
  23.                           axis=0) 

我们把上述代码分解:

  • get_face_mask()的定义是为一张图像和一个标记矩阵生成一个遮罩,它画出了两个白色的凸多边形:一个是眼睛周围的区域,一个是鼻子和嘴部周围的区域。之后它由11个像素向遮罩的边缘外部羽化扩展,可以帮助隐藏任何不连续的区域。

  • 这样一个遮罩同时为这两个图像生成,使用与步骤2中相同的转换,可以使图像2的遮罩转化为图像1的坐标空间。

  • 之后,通过一个element-wise最大值,这两个遮罩结合成一个。结合这两个遮罩是为了确保图像1被掩盖,而显现出图像2的特性。

最后,应用遮罩,给出最终的图像:

output_im = im1 * (1.0 - combined_mask) + warped_corrected_im2 * combined_mask

图片描述



来源:51CTO

相关文章
|
4天前
|
并行计算 C语言 开发者
优化Python代码的五大技巧
Python作为一种流行的编程语言,在各种应用场景中广泛使用。然而,随着项目规模的增长和需求的变化,Python代码的性能和可维护性也成为了关键问题。本文将介绍优化Python代码的五大技巧,帮助开发者提升代码效率和质量。
|
1天前
|
人工智能 Python
【Python实用技能】建议收藏:自动化实现网页内容转PDF并保存的方法探索(含代码,亲测可用)
【Python实用技能】建议收藏:自动化实现网页内容转PDF并保存的方法探索(含代码,亲测可用)
14 0
|
1天前
|
数据安全/隐私保护 Python
Python中的装饰器:提升代码可读性和灵活性
Python中的装饰器是一种强大的编程工具,能够提升代码的可读性和灵活性。本文将深入探讨装饰器的原理和用法,以及如何利用装饰器来简化代码、实现日志记录、权限控制等功能,从而让你的Python代码更加优雅和高效。
|
7天前
|
数据安全/隐私保护 Python
Python中的装饰器:提升代码可读性与灵活性
Python中的装饰器是一种强大的工具,可以在不改变函数原有逻辑的情况下,为函数添加额外的功能。本文将介绍装饰器的基本概念和用法,并通过实例演示如何利用装饰器提升代码的可读性和灵活性,使代码更加简洁、易于维护。
|
7天前
|
BI 开发者 数据格式
Python代码填充数据到word模板中
【4月更文挑战第16天】
|
1月前
|
文字识别 Python
python代码运行报错:No module named 'aliyunsdkcore'
用python调用阿里云图片OCR识别,使用的是阿里云官方给的传本地图片文件进行检测的代码,运行报错:No module named 'aliyunsdkcore'。在pycharm python软件包和终端里安装aliyunsdkcore这个模块都失败了。
|
5月前
|
Python
python 股票数据分析、绘制K线图、价格走势图、收益率计算 完整代码+数据 可直接运行
python 股票数据分析、绘制K线图、价格走势图、收益率计算 完整代码+数据 可直接运行
94 0
python 股票数据分析、绘制K线图、价格走势图、收益率计算 完整代码+数据 可直接运行
|
5月前
|
数据可视化 数据挖掘 Python
python pandas 宝可梦数据分析可视化实战 课程设计 完整代码+数据 可直接运行
python pandas 宝可梦数据分析可视化实战 课程设计 完整代码+数据 可直接运行
55 0
|
5月前
|
计算机视觉 Python
使⽤Python实现天⽂影像图像处理和分析 完整代码数据 可直接运行
使⽤Python实现天⽂影像图像处理和分析 完整代码数据 可直接运行
28 0
|
7月前
|
存储 Java 测试技术
为什么 Python 代码在函数中运行得更快?
为什么 Python 代码在函数中运行得更快?

热门文章

最新文章