大数据时代结构化存储云HBase技术架构及最佳实践

  1. 云栖社区>
  2. 博客>
  3. 正文

大数据时代结构化存储云HBase技术架构及最佳实践

场景研读 2017-09-04 18:09:43 浏览10159
展开阅读全文
在10年,阿里研究HBase,是为了解决阿里容量及并发的实际问题,按照数据库要求,阿里深入HBase技术,并致力于保障稳定性和性能,目前已经有10000台规模,数百个集群,大约1亿的QPS,服务整个集团的业务。17年,把这部分能力也开放给公有云客户。本文中,阿里云高级专家封神带来了主题演讲《大数据时代结构化存储云HBase技术架构及最佳实践》,介绍HBase的应用选择、实战案例、技术平台解读以及后续的规划。

为什么应用HBase

一般而言,传统关系型数据库面临着成本、容量、QPS、分析等多方面的问题:存储成本较高;无法满足TB、PB级别的数量存储需求;QPS无法满足较高的并发要求,性能不能横向扩展;数据隔离,从而不能满足分析类的需求。

通过关系型数据库MySQL,可以解决中小数据库存储需求;通过分库分表,能够解决一定容量及并发的需求,但

网友评论

登录后评论
0/500
评论
场景研读
+ 关注