阿里云E-MapReduce Spark 作业配置

  1. 云栖社区>
  2. 博客>
  3. 正文

阿里云E-MapReduce Spark 作业配置

云栖技术 2017-09-01 00:50:02 浏览1260
展开阅读全文

1.进入阿里云 E-MapReduce 控制台作业列表

2.单击该页右上角的创建作业,进入创建作业页面。

3.填写作业名称。

4.选择 Spark 作业类型,表示创建的作业是一个 Spark 作业。Spark 作业在 E-MapReduce 后台使用以下的方式提交:

spark-submit [options] --class [MainClass] xxx.jar args
5.在应用参数选项框中填写提交该 Spark 作业需要的命令行参数。请注意,应用参数框中只需要填写“spark-submit”之后的参数即可。以下分别示例如何填写创建 Spark 作业和 pyspark 作业的参数。

创建 Spark 作业

新建一个 Spark WordCount 作业。

作业名称: Wordcount

类型:选择 Spark

应用参数:

在命令行下完整的提交命令是:

spark-submit --master yarn-client --driver-memory 7G --executor-memory 5G --executor-cores 1 --num-executors 32 --class com.aliyun.emr.checklist.benchmark.SparkWordCount emr-checklist_2.10-0.1.0.jar oss://emr/checklist/data/wc oss://emr/checklist/data/wc-counts 32

在 E-MapReduce 作业的应用参数框中只需要填写:

--master yarn-client --driver-memory 7G --executor-memory 5G --executor-cores 1 --num-executors 32 --class com.aliyun.emr.checklist.benchmark.SparkWordCount ossref://emr/checklist/jars/emr-checklist_2.10-0.1.0.jar oss://emr/checklist/data/wc oss://emr/checklist/data/wc-counts 32

需要注意的是:作业 Jar 包保存在 OSS 中,引用这个 Jar 包的方式是 ossref://emr/checklist/jars/emr-checklist_2.10-0.1.0.jar。您可以单击选择 OSS 路径,从 OSS 中进行浏览和选择,系统会自动补齐 OSS 上 Spark 脚本的绝对路径。请务必将默认的“oss”协议切换成“ossref”协议。

创建 pyspark 作业

E-MapReduce 除了支持 Scala 或者 Java 类型作业外,还支持 python 类型 Spark 作业。以下新建一个 python 脚本的 Spark Kmeans 作业。

作业名称:Python-Kmeans

类型:Spark

应用参数:

--master yarn-client --driver-memory 7g --num-executors 10 --executor-memory 5g --executor-cores 1  ossref://emr/checklist/python/kmeans.py oss://emr/checklist/data/kddb 5 32

支持 Python 脚本资源的引用,同样使用“ossref”协议。

pyspark 目前不支持在线安装 Python 工具包。

6选择执行失败后策略。

7.单击确定,Spark 作业即定义完成。

网友评论

登录后评论
0/500
评论
云栖技术
+ 关注