iOS中线程Call Stack的捕获和解析(二)

简介:

上接iOS中线程Call Stack的捕获和解析(一)

1. 部分参考资料

做这一块时也是查阅了很多链接和书籍,包括但不限于:

以及很多Google Search。

2. 相关API和数据结构

由于我们在上面回溯线程调用栈拿到的是一组地址,所以这里进行符号化的输入输出应该分别是地址和符号,接口设计类似如下:

- (NSString *)symbolicateAddress:(uintptr_t)addr;

不过在实际操作中,我们需要依赖于dyld相关方法和数据结构:

/*
 * Structure filled in by dladdr().
 */
typedef struct dl_info {
        const char      *dli_fname;     /* Pathname of shared object */
        void            *dli_fbase;     /* Base address of shared object */
        const char      *dli_sname;     /* Name of nearest symbol */
        void            *dli_saddr;     /* Address of nearest symbol */
} Dl_info;

extern int dladdr(const void *, Dl_info *);
DESCRIPTION
     These routines provide additional introspection of dyld beyond that provided by dlopen() and dladdr()

     _dyld_image_count() returns the current number of images mapped in by dyld. Note that using this count
     to iterate all images is not thread safe, because another thread may be adding or removing images dur-ing during
     ing the iteration.

     _dyld_get_image_header() returns a pointer to the mach header of the image indexed by image_index.  If
     image_index is out of range, NULL is returned.

     _dyld_get_image_vmaddr_slide() returns the virtural memory address slide amount of the image indexed by
     image_index. If image_index is out of range zero is returned.

     _dyld_get_image_name() returns the name of the image indexed by image_index. The C-string continues to
     be owned by dyld and should not deleted.  If image_index is out of range NULL is returned.

又为了要判断此次解析是否成功,所以接口设计演变为:

bool jdy_symbolicateAddress(const uintptr_t addr, Dl_info *info)

Dl_info用来填充解析的结果。

3. 算法思路

对一个地址进行符号化解析说起来也是比较直接的,就是找到地址所属的内存镜像,然后定位该镜像中的符号表,最后从符号表中匹配目标地址的符号。

mach_o_segments(图片来源于苹果官方文档)

以下思路是描述一个大致的方向,并没有涵盖具体的细节,比如基于ASLR的偏移量:

        // 基于ASLR的偏移量https://en.wikipedia.org/wiki/Address_space_layout_randomization

        /**

         * When the dynamic linker loads an image, 

         * the image must be mapped into the virtual address space of the process at an unoccupied address.

         * The dynamic linker accomplishes this by adding a value "the virtual memory slide amount" to the base address of the image.

         */

3.1 寻找包含地址的目标镜像

起初看到一个API还有点小惊喜,可惜iPhone上用不了:

extern bool _dyld_image_containing_address(const void* address)
__OSX_AVAILABLE_BUT_DEPRECATED(__MAC_10_3,__MAC_10_5,__IPHONE_NA,__IPHONE_NA);

所以得自己来判断。

怎么判断呢?

A segment defines a range of bytes in a Mach-O file and the addresses and memory protection attributes at which those bytes are mapped into virtual memory when the dynamic linker loads the application. As such, segments are always virtual memory page aligned. A segment contains zero or more sections.

通过遍历每个段,判断目标地址是否落在该段包含的范围内:

/*
 * The segment load command indicates that a part of this file is to be
 * mapped into the task's address space.  The size of this segment in memory,
 * vmsize, maybe equal to or larger than the amount to map from this file,
 * filesize.  The file is mapped starting at fileoff to the beginning of
 * the segment in memory, vmaddr.  The rest of the memory of the segment,
 * if any, is allocated zero fill on demand.  The segment's maximum virtual
 * memory protection and initial virtual memory protection are specified
 * by the maxprot and initprot fields.  If the segment has sections then the
 * section structures directly follow the segment command and their size is
 * reflected in cmdsize.
 */
struct segment_command { /* for 32-bit architectures */
    uint32_t    cmd;        /* LC_SEGMENT */
    uint32_t    cmdsize;    /* includes sizeof section structs */
    char        segname[16];    /* segment name */
    uint32_t    vmaddr;     /* memory address of this segment */
    uint32_t    vmsize;     /* memory size of this segment */
    uint32_t    fileoff;    /* file offset of this segment */
    uint32_t    filesize;   /* amount to map from the file */
    vm_prot_t   maxprot;    /* maximum VM protection */
    vm_prot_t   initprot;   /* initial VM protection */
    uint32_t    nsects;     /* number of sections in segment */
    uint32_t    flags;      /* flags */
};


/**
 * @brief 判断某个segment_command是否包含addr这个地址,基于segment的虚拟地址和段大小来判断
 */
bool jdy_segmentContainsAddress(const struct load_command *cmdPtr, const uintptr_t addr) {
    if (cmdPtr->cmd == LC_SEGMENT) {
        struct segment_command *segPtr = (struct segment_command *)cmdPtr;
        if (addr >= segPtr->vmaddr && addr < (segPtr->vmaddr + segPtr->vmsize)) {
            return true;
        }

这样一来,我们就可以找到包含目标地址的镜像文件了。

3.2 定位目标镜像的符号表

由于符号的收集和符号表的创建贯穿着编译和链接阶段,这里就不展开了,而是只要确定除了代码段_TEXT和数据段DATA外,还有个_LINKEDIT段包含符号表:

The __LINKEDIT segment contains raw data used by the dynamic linker, such as symbol, string, and relocation table entries.

所以现在我们需要先定位到__LINKEDIT段,同样摘自苹果官方文档:

Segments and sections are normally accessed by name. Segments, by convention, are named using all uppercase letters preceded by two underscores (for example, _TEXT); sections should be named using all lowercase letters preceded by two underscores (for example, _text). This naming convention is standard, although not required for the tools to operate correctly.

我们通过遍历每个段,比较段名称是否和__LINKEDIT相同:

usr/include/mach-o/loader.h

#define SEG_LINKEDIT    "__LINKEDIT"

接着来找符号表:

/**

 * 摘自《The Mac Hacker's Handbook》:

 * The LC_SYMTAB load command describes where to find the string and symbol tables within the __LINKEDIT segment. The offsets given are file offsets, so you subtract the file offset of the __LINKEDIT segment to obtain the virtual memory offset of the string and symbol tables. Adding the virtual memory offset to the virtual-memory address where the __LINKEDIT segment is loaded will give you the in-memory location of the string and sym- bol tables.

 */

也就是说,我们需要结合__LINKEDIT segment_command(见上面结构描述)和LC_SYMTAB load_command(见下面结构描述)来定位符号表:

/*
 * The symtab_command contains the offsets and sizes of the link-edit 4.3BSD
 * "stab" style symbol table information as described in the header files
 * <nlist.h> and <stab.h>.
 */
struct symtab_command {
    uint32_t    cmd;        /* LC_SYMTAB */
    uint32_t    cmdsize;    /* sizeof(struct symtab_command) */
    uint32_t    symoff;     /* symbol table offset */
    uint32_t    nsyms;      /* number of symbol table entries */
    uint32_t    stroff;     /* string table offset */
    uint32_t    strsize;    /* string table size in bytes */
};

如上述引用描述,LC_SYMTAB和_LINKEDIT中的偏移量都是文件偏移量,所以要获得内存中符号表和字符串表的地址,我们先将LC_SYMTAB的symoff和stroff分别减去LINKEDIT的fileoff得到虚拟地址偏移量,然后再加上_LINKEDIT的vmoffset得到虚拟地址。当然,要得到最终的实际内存地址,还需要加上基于ASLR的偏移量。

3.3 在符号表中寻找和目标地址最匹配的符号

终于找到符号表了,写到这里有点小累,直接贴下代码:

/**
 * @brief 在指定的符号表中为地址匹配最合适的符号,这里的地址需要减去vmaddr_slide
 */
const JDY_SymbolTableEntry *jdy_findBestMatchSymbolForAddress(uintptr_t addr,
                                                              JDY_SymbolTableEntry *symbolTable,
                                                              uint32_t nsyms) {

    // 1. addr >= symbol.value; 因为addr是某个函数中的一条指令地址,它应该大于等于这个函数的入口地址,也就是对应符号的值;
    // 2. symbol.value is nearest to addr; 离指令地址addr更近的函数入口地址,才是更准确的匹配项;

    const JDY_SymbolTableEntry *nearestSymbol = NULL;
    uintptr_t currentDistance = UINT32_MAX;

    for (uint32_t symIndex = 0; symIndex < nsyms; symIndex++) {
        uintptr_t symbolValue = symbolTable[symIndex].n_value;
        if (symbolValue > 0) {
            uintptr_t symbolDistance = addr - symbolValue;
            if (symbolValue <= addr && symbolDistance <= currentDistance) {
                currentDistance = symbolDistance;
                nearestSymbol = symbolTable + symIndex;
            }
        }
    }

    return nearestSymbol;
}


/*
 * This is the symbol table entry structure for 64-bit architectures.
 */
struct nlist_64 {
    union {
        uint32_t  n_strx; /* index into the string table */
    } n_un;
    uint8_t n_type;        /* type flag, see below */
    uint8_t n_sect;        /* section number or NO_SECT */
    uint16_t n_desc;       /* see <mach-o/stab.h> */
    uint64_t n_value;      /* value of this symbol (or stab offset) */
};

找到匹配的nlist结构后,我们可以通过.n_un.n_strx来定位字符串表中相应的符号名。

目录
相关文章
|
15天前
|
Java
并发编程之线程池的底层原理的详细解析
并发编程之线程池的底层原理的详细解析
46 0
|
15天前
|
Java
并发编程之线程池的应用以及一些小细节的详细解析
并发编程之线程池的应用以及一些小细节的详细解析
22 0
|
1月前
|
监控 Java
解析Java线程池的异常处理机制
该内容是一个关于Java线程和线程池异常处理的总结。提到的关键点包括: 1. 引用了滑动验证页面和相关文章资源。 2. 区分了`execute`与`submit`在处理线程异常时的区别,`submit`可能会捕获并隐藏异常,而`execute`会直接抛出。 3. 提供了处理线程和线程池异常的建议,如使用try/catch直接捕获,或者自定义线程工厂和未捕获异常处理器。 4. 示例代码展示了如何通过设置`UncaughtExceptionHandler`来监控和处理线程中的异常。 请注意,由于字符限制,这里只提供了简要摘要,详细解释和代码示例请参考原文。
22 3
|
9天前
|
并行计算 数据处理 开发者
Python并发编程:解析异步IO与多线程
本文探讨了Python中的并发编程技术,着重比较了异步IO和多线程两种常见的并发模型。通过详细分析它们的特点、优劣势以及适用场景,帮助读者更好地理解并选择适合自己项目需求的并发编程方式。
|
15天前
|
监控 Java
并发编程之线程池的详细解析
并发编程之线程池的详细解析
12 0
|
18天前
|
设计模式 监控 前端开发
深入解析iOS中的并发编程模式
【4月更文挑战第20天】 在当今移动应用开发中,提升程序的响应性和性能是至关重要的。特别是在iOS平台上,合理利用多线程和并发编程技术可以显著改善用户体验。本文旨在探讨几种在iOS开发中广泛使用的并发编程模式,包括线程、GCD(Grand Central Dispatch)、Operation Queues以及异步设计模式等。通过对这些技术的深入分析与比较,我们不仅将揭示各自的优势和潜在缺陷,还会展示如何结合它们以解决实际开发中遇到的并发挑战。
|
19天前
|
监控 安全 Java
【JavaEE多线程】深入解析Java并发工具类与应用实践
【JavaEE多线程】深入解析Java并发工具类与应用实践
31 1
|
20天前
|
调度 Python
Python多线程、多进程与协程面试题解析
【4月更文挑战第14天】Python并发编程涉及多线程、多进程和协程。面试中,对这些概念的理解和应用是评估候选人的重要标准。本文介绍了它们的基础知识、常见问题和应对策略。多线程在同一进程中并发执行,多进程通过进程间通信实现并发,协程则使用`asyncio`进行轻量级线程控制。面试常遇到的问题包括并发并行混淆、GIL影响多线程性能、进程间通信不当和协程异步IO理解不清。要掌握并发模型,需明确其适用场景,理解GIL、进程间通信和协程调度机制。
31 0
|
2月前
|
API 数据安全/隐私保护 iOS开发
利用uni-app 开发的iOS app 发布到App Store全流程
利用uni-app 开发的iOS app 发布到App Store全流程
101 3
|
4月前
|
存储 iOS开发
iOS 开发,如何进行应用的本地化(Localization)?
iOS 开发,如何进行应用的本地化(Localization)?
123 2

热门文章

最新文章

推荐镜像

更多