新工具——TensorLayer:管理深度学习项目的复杂性

简介: 本文介绍了一种新基于TensorFlow的python库——TensorLayer,它能够有效的帮助开发者管理好自己的深度学习网络。并且它还提供了很多功能强悍的API,帮助开发者更好的完成任务。
更多深度文章,请关注: https://yq.aliyun.com/cloud

对于深度学习开发者来说,深度学习系统变得越来越复杂。以至于我们需要使用轻量级的工具从头到尾来管理流程,为了将更多的连续学习内置到神经网络中,这就要求我们建立可以迭代增强的更有弹性的数据集以及更多的动态模型。

深度学习开发人员必须花费大量的时间来整合神经网络的组件,管理模型生命周期,组织数据和调整系统并行度等等。随着使用新的培训样本后,人类对于神经网络模型的见解,更新模型和跟踪其变化的能力就变得非常必要了。为此伦敦帝国理工学院的一个团队开发了一个python库来管理跨学科开发人员项目的复杂迭代过程。

为了更好地管理开发过程,该团队开发了一个通用的Python库——TensorLayer。这个库集成了很多开发过程中包括的方法,其中包括(操作、模型生命周期、并行计算、失败)都以模块化进行抽象。这些模块包括以下功能:用于管理神经网络层、用于管理模型和其生命周期、用于管理数据集、最后是解决容错的工作流模块。而TensorFlow是培训和推理的核心平台,它为MongoDB提供了存储空间。这些API的使用可以在文末链接中查看,正是由于这些API的存在,TensorLayer才会如此的强大。

3601c981327055a722f76f39b4698ee115dcb003

深度学习的开发人员可以借助TensorLayer的功能编写了多媒体应用程序。这些功能包括提供和导入层实现,构建神经网络,管理模型生命周期,创建在线或离线数据集,以及编写训练计划。这些功能分为四个模块:层,网络,数据集和工作流。

该团队表示,虽然像Keras和TFLearn这样的工具现在很有用,但它们并不像网络那样可以随网络的扩张变得更复杂甚至无限制的迭代。它们提供了必要的抽象,以降低使用工具的门槛,但又掩盖了很多底层的算法。虽然对开发者有好处,但是相对来说底层技术就变得难以调整和修改,而底层技术的修改和调整,这在解决许多现实世界的问题上是非常必要的。

与Keras和TFLearn相比,TensorLayer不仅提供了高级抽象,而且提供了包括数据预处理、训练、训练后处理,以及服务模块和数据库管理在内的端到端工作流程,这些是开发者建立一个完整模型所需要的全部过程。

TensorLayer倡导更灵活且可组合的范式:神经网络库可以与本机引擎交换使用。这允许开发者轻松地利用预建模块,而且不会影响可见性。这种非侵入性也使得与其他TF的包装器如TF-Slim和Keras合并成为了可能。并且开发小组认为,灵活性不会影响性能。

该小组在文档中中强调了许多应用,其中还提供了有关每个模块、整体架构和当前开发的详细信息。应用包括生成对抗网络、深层加强学习、最终用户环境中的超参数调优。自去年GitHub发布以来,TensorLayer已经被用于多模式研究、图像转换和医疗信号处理。

TensorLayer正处于积极的发展阶段,而且从开放社区获得了许多贡献。它已被伦敦帝国理工学院,卡内基梅隆大学,斯坦福大学,清华大学,加州大学洛杉矶分校等大学研究人员广泛使用,还包括谷歌,微软,阿里巴巴,腾讯,ReFULE4,彭博等许多工程师。

TensorLayer安装:

TensorLayer需要一些预安装库, TensorFlow  numpy matplotlib 对于 GPU 加速,需要安装 CUDA cuDNN

如果你遇到麻烦,可以查看 TensorFlow 安装手册 ,它包含了在不同系统中安装 TensorFlow 的步骤。

如需了解更多关于TensorFlow 的相关功能,请点击:TensorLayer 中文文档

本文由北邮@爱可可-爱生活老师推荐,@阿里云云栖社区组织翻译。

文章原标题《Managing Deep Learning Development Complexity

作者:Nicole Hemsoth 译者:袁虎 审阅:阿福

文章为简译,更为详细的内容,请查看原文

目录
打赏
0
0
0
0
1807
分享
相关文章
ModelScope深度学习项目低代码开发
低代码开发平台通过丰富的预训练模型库、高度灵活的预训练模型和强大的微调训练功能,简化深度学习项目开发。以阿里魔搭为例,提供大量预训练模型,支持快速迭代与实时反馈,减少从头训练的时间和资源消耗。开发者可轻松调整模型参数,适应特定任务和数据集,提升模型性能。ModelScope平台进一步增强这些功能,提供模型搜索、体验、管理与部署、丰富的模型和数据资源、多模态任务推理及社区协作,助力高效、环保的AI开发。
210 65
深度学习工具和框架详细指南:PyTorch、TensorFlow、Keras
在深度学习的世界中,PyTorch、TensorFlow和Keras是最受欢迎的工具和框架,它们为研究者和开发者提供了强大且易于使用的接口。在本文中,我们将深入探索这三个框架,涵盖如何用它们实现经典深度学习模型,并通过代码实例详细讲解这些工具的使用方法。
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
植物病害识别系统。本系统使用Python作为主要编程语言,通过收集水稻常见的四种叶片病害图片('细菌性叶枯病', '稻瘟病', '褐斑病', '稻瘟条纹病毒病')作为后面模型训练用到的数据集。然后使用TensorFlow搭建卷积神经网络算法模型,并进行多轮迭代训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地模型文件。再使用Django搭建Web网页平台操作界面,实现用户上传一张测试图片识别其名称。
214 22
植物病害识别系统Python+卷积神经网络算法+图像识别+人工智能项目+深度学习项目+计算机课设项目+Django网页界面
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
284 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
204 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
116 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台。果蔬识别系统,本系统使用Python作为主要开发语言,通过收集了12种常见的水果和蔬菜('土豆', '圣女果', '大白菜', '大葱', '梨', '胡萝卜', '芒果', '苹果', '西红柿', '韭菜', '香蕉', '黄瓜'),然后基于TensorFlow库搭建CNN卷积神经网络算法模型,然后对数据集进行训练,最后得到一个识别精度较高的算法模型,然后将其保存为h5格式的本地文件方便后期调用。再使用Django框架搭建Web网页平台操作界面,实现用户上传一张果蔬图片识别其名称。
146 0
【果蔬识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
基于深度学习的手写数字识别项目GUI(Deep Learning Project – Handwritten Digit Recognition using Python)
基于深度学习的手写数字识别项目GUI(Deep Learning Project – Handwritten Digit Recognition using Python)
167 0
【深度学习】AudioLM音频生成模型概述及应用场景,项目实践及案例分析
AudioLM(Audio Language Model)是一种基于深度学习的音频生成模型,它使用自回归或变分自回归的方法来生成连续的音频信号。这类模型通常建立在Transformer架构或者类似的序列到序列(Seq2Seq)框架上,通过学习大量音频数据中的统计规律,能够生成具有高保真度和创造性的音频片段。AudioLM模型不仅能够合成音乐、语音,还能生成自然界的声音、环境噪声等,其应用广泛,涵盖了娱乐、教育、辅助技术、内容创作等多个领域。
209 1
Deforum:动画制作与深度学习相结合的工具
Deforum 是一个专注于将动画制作与深度学习相结合的工具,旨在简化动画创作过程,同时提高动画的质量和复杂性。Deforum 通过结合计算机视觉、深度学习、生成对抗网络(GAN)等技术,为用户提供便捷且高效的动画制作工具。
116 3
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等