LightOJ 1341 - Aladdin and the Flying Carpet

  1. 云栖社区>
  2. 博客>
  3. 正文

LightOJ 1341 - Aladdin and the Flying Carpet

angel_imp 2016-03-20 16:51:00 浏览1787
展开阅读全文
传送门

1341 - Aladdin and the Flying Carpet
Time Limit: 3 second(s) Memory Limit: 32 MB

It's said that Aladdin had to solve seven mysteries before getting the Magical Lamp which summons a powerful Genie. Here we are concerned about the first mystery.

Aladdin was about to enter to a magical cave, led by the evil sorcerer who disguised himself as Aladdin's uncle, found a strange magical flying carpet at the entrance. There were some strange creatures guarding the entrance of the cave. Aladdin could run, but he knew that there was a high chance of getting caught. So, he decided to use the magical flying carpet. The carpet was rectangular shaped, but not square shaped. Aladdin took the carpet and with the help of it he passed the entrance.

Now you are given the area of the carpet and the length of the minimum possible side of the carpet, your task is to find how many types of carpets are possible. For example, the area of the carpet 12, and the minimum possible side of the carpet is 2, then there can be two types of carpets and their sides are: {2, 6} and {3, 4}.

Input

Input starts with an integer T (≤ 4000), denoting the number of test cases.

Each case starts with a line containing two integers: a b (1 ≤ b ≤ a ≤ 1012) where a denotes the area of the carpet and b denotes the minimum possible side of the carpet.

Output

For each case, print the case number and the number of possible carpets.

Sample Input

Output for Sample Input

2

10 2

12 2

Case 1: 1

Case 2: 2

 


题目大意:
给定T组数据,每组数据有两个数 面积s 和 矩形的宽 a,让你求的是在面积s一定的情况下,假设长和宽分别为a 和 b,最小的边长 >= a的有几种方式可以组成矩形(不是正方形)

解析一下样例:
面积为12 ,最小的边长为2:
首先将12进行素因子分解12 = 2^2*3,所以我们能够得到 
12 = 1 * 12(不符合条件 最小的边长<2)
12 = 2 * 6(符合)
12 = 3 * 4(符合)
所以有 2 种方式,输出 2


解题思路:
每次做题的时候先要考虑一下能不能暴力(暴力简单),这个题如果我们要暴力的话肯定会超时,所以就不要暴力了
通过上述的样例分析,我们也知道了我们首先要做的就是将 面积 s 进行素因子分解,这就用到了唯一分解定理,
s = p1^e1 * p2^e2 *……* pk^ek,我们要得到的是因子的个数,这里所说的因子个数默认为正的,得到因子个数的方法是 num = (e1+1) * (e2+1) * ... *(ek+1),然后又因为没有正方形,而且我们要得到的是有多少对,所以将 num除以2,就得到了可以组成矩形面积为 s 的矩形个数,然后我们只需要在 [1,a)的区间内(注意区间开闭)将 s 的因子减掉就行了(num--),这样就可以了。

上代码:
#include <iostream>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <cstdio>
using namespace std;
typedef long long LL;
const int MAXN = 1e6+5;
bool prime[MAXN];
LL p[MAXN],k;
void isprime()
{
    memset(prime, true, sizeof(prime));
    prime[1] = false;
    k = 0;
    for(LL i=2; i<MAXN; i++)
    {
        if(prime[i])
        {
            p[k++] = i;
            for(LL j=i*i; j<MAXN; j+=i)
                prime[j] = false;
        }
    }
}

LL Solve(LL m)
{
    LL ret = 1;
    for(LL i=0; p[i]*p[i]<=m&&i<k; i++)
    {
        LL cnt = 0;
        if(m%p[i] == 0)
        {
            while(m%p[i] == 0)
            {
                cnt++;
                m /= p[i];
            }
            ret *= (cnt+1);
        }
    }
    if(m > 1)
        ret *= 2;
    return ret;
}
int main()
{
    isprime();
    int T;
    cin>>T;
    for(int cas=1; cas<=T; cas++)
    {
        LL s,a;
        cin>>s>>a;
        if(a*a >= s)
            printf("Case %d: 0\n",cas);
        else
        {
            LL ret = Solve(s);
            ret /= 2;
            for(LL i=1; i<a; i++)
                if(s % i == 0)
                    ret--;
            printf("Case %d: %lld\n",cas,ret);
        }
    }
    return 0;
}



网友评论

登录后评论
0/500
评论
angel_imp
+ 关注