预言不准了 摩尔定律瓶颈突破还有戏吗

简介:

芯片巨头英特尔公司日前在提交给美国证券交易委员会的文件中提到停止采用“Tick-Tock”处理器升级周期,转而更换为处理器研发周期三步战略,即制程工艺(PROCESS)-架构更新(ARCHITECTURE)-优化(OPTIMIZATION),这样一来,产品的升级及更新周期将大幅延长。

摩尔定律瓶颈突破还有戏吗

这一消息的公布引发了轩然大波,有些媒体将其视作摩尔定律(Moore's law)的终结,还有不少网友认为英特尔连牙膏也不愿意挤了,忽视消费者的利益只想坐着赚钱。

这两种看法从客观和主观上认定了技术发展的放缓甚至是停滞,但事实往往不只是表象这么简单。在提出50年之后,摩尔定律仍然有着一众拥趸,也足以见得其影响之深远。

不过虽然有部分媒体和消费者不看好,但是经过50多年考验的摩尔定律不一定就这样终结了。下面笔者就带您纵观CPU芯片的发展,来看看摩尔定律到底遇到了怎样的瓶颈,未来的发展真的像一些人所说的那样要没戏了吗?

两年翻番摩尔定律预测发展

其实提到电子产品的性能发展,很多朋友都听说过摩尔定律。需要注意的是,虽然名为定律,但摩尔定律并不是一个真正的定论,而是人为预测的一个发展的趋势,具有一定的指导意义。

  英特尔创始人之一戈登·摩尔(图片源自IEEE)

摩尔定律是由英特尔的创始人之一戈登·摩尔(Gordon Moore)在1965年4月的《电子》杂志(Electronics)提出的,其核心内容为:集成电路上可以容纳的晶体管数目在大约每经过24个月便会增加一倍。

简单来说,就是说集成电路上的晶体管数量每过两年就会翻一番,也就是说,这一数字是呈指数级增长的,发展的速度会越来越快。

  1971-2011年台式电脑处理器性能拟合摩尔定律

(图片源自维基百科,注意纵坐标为指数增长,而非线性增长)

自从1965年以来,摩尔定律一直吻合电脑处理器中晶体管的数目,从最早的1958年的集成电路中一个双极性晶体管、三个电阻和一个电容,到2011年的处理器中超过了26亿枚晶体管,处理器性能在飞速提高的同时保持了较低的能耗,价格也在贴近消费者的水平,为我们提供了越来越好的体验。

摩尔定律体现在英特尔的处理器上,就是“Tick-Tock”的发展模式。“Tick-Tock”原意是时钟走过一秒钟发出的“滴答”声响,因此也称为“钟摆”理论。

英特尔每隔两年对处理器架构进行一次升级,即“Tick年”实现制造工艺进步,而“Tock年”则实现架构的更新,从而实现每两年的一次发展,这也是摩尔定律的一个较为直观的展示。

遇到瓶颈制造工艺技术受限

近期英特尔停止“Tick-Tock”发展模式被一些媒体解读为摩尔定律的终结,这一说法暂时还没有被多数人响应,但不能否认的是,CPU性能的发展确实遇到了瓶颈。

此前的2015年年中,英特尔承认其10纳米制造工艺延期,无法按预期在当年年底前实现量产,因此不得不延长14纳米Skylake处理器架构生命周期。一直高速发展的处理器“突然”慢了下来,并不是网友认为的那样,“英特尔连牙膏都不愿意挤了”。

  CPU制造需要非常多的工序(图片源自tabloid)

CPU的制造工艺,即在硅材料上生产CPU时元器件的连接线宽度在不断减小,经历了0.5微米、0.35微米、0.25微米、0.18微米、0.13微米、90纳米、65纳米、45纳米、32纳米、22纳米,到现在的14纳米,乃至以后的10纳米、7纳米,制造工艺在不断进步的同时也提供了更多的晶体管布局和更少的能耗。

  CPU的制造工艺在不断提高(图片源自ayay)

进一步提升CPU制造工艺的难度在于,现有的材料和技术水平很难在更小的尺寸上布局元件,而且在更小的尺度下,一些器件就不能简单地以半导体元件的物理知识进行分析,还需要结合量子力学的理论,这样一来整个CPU的设计就会变得更为复杂。

  CPU制造工艺很难再大幅提高(图片源自opengameart)

除此之外,考虑到原子的尺寸,一些器件或涂层的体积是无法缩小的,这样就进一步限制了处理器尺寸的减小,由于成本的限制也很难将非常精尖的技术应用到大规模量产中。

出路尤在硬件发展需多元化

这样看来好像摩尔定律正如一些媒体认为的那样要终结了,不过正如摩尔定律不是一个定论一样,硬件的发展也并不局限,仍然是有出路的。

  CPU制造发展走向何方(图片源自cadence)

在2015年5月接受电气和电子工程师协会(IEEE,Institute of Electrical and Electronics Engineers)在摩尔定律50周年之际的采访时,戈登·摩尔运用了一个形象的比喻:“我无法预见下一个世代(芯片)的发展,在那儿我们仿佛遇上了一堵墙。而墙一直在后退(使我们有继续进步的空间)。我很惊讶工程师有如此的创造力,可以在难于突破的环境下找到新的出路。”

  应用在22纳米处理器上的Tri-gate技术(右图,图片源自英特尔)

目前的CPU制造工艺还是主要注重于在平面上进步,而要突破摩尔定律的瓶颈可以依靠在深度(空间)层面上发展。借助3D布局,CPU的元件布局可以更加紧凑,元器件之间的连接也可以更为高效。

另外,目前受限于氧化硅层的厚度最小为1纳米,以后的发展可能会需要其他材料,也就是将栅氧化层替换为其他材料,例如英特尔就将氧化铪(HfO2)作为栅氧化层材料,未来也有可能采用其他材料进行优化。

  CPU以外的空间也可以高效利用(图片源自chipworks)

此外,优化设计也是可以提升CPU性能的一个方面,现有的CPU空间利用率非常高,但是周围的地方却没有如此密集的元器件,如果能将这些空间合理利用,也可以将整体性能再度提高,不过和前者不同,这种方式可以提升的性能有限。

既然有这样的方法,为什么英特尔还是延长了处理器升级周期呢?有些是现有的技术不够成熟,无法应用在商业产品中;有些原材料限制使得制造成本过高,最终的产品零售价过高,不适合作为消费级产品;还有目前不适合量产的处理技术,需要发展完善之后才能让用户受益。

  处理器还会不断发展进步(图片源自vortez)

从现在的形势来看CPU的发展放缓,但这并不影响技术的继续进步。遇到的瓶颈对大家来说都是一项挑战,相信我们也会坚韧不拔地努力下去,发展的脚步不止,也为我们带来更好的生活。当然,笔者的观点也存在一定的局限性,如果您有独到的见解,也欢迎和我们交流。



本文转自d1net(转载)

相关文章
浅谈电脑城的衰退是好是坏社会现象_kaic
浅谈电脑城的衰退是好是坏社会现象_kaic
|
9月前
|
决策智能
博弈论第十五集总结(“落后的感应:间谍与先手优势”观后感)
博弈论第十五集总结(“落后的感应:间谍与先手优势”观后感)
50 0
|
11月前
|
机器学习/深度学习 存储 人工智能
模型只要「变大」就能直通AGI?马库斯再次炮轰:三个危机已经显现!
模型只要「变大」就能直通AGI?马库斯再次炮轰:三个危机已经显现!
108 0
|
Web App开发 编解码 缓存
乾坤之大,一锅炖不下
qiankun 源码学习什么是乾坤乾为天,坤为地,乾坤代表天地。不得不说这个名字:qiankun 是基于 single-spa 的微前端解决方案。什么是微前端?什么是 single-spa?前端喜欢不断的造轮子这件事儿是毋庸置疑的,但轮子都有被造出来的原因,比如 single-spa,他是最早的微前端框架。微前端产生的原因很多:拆分巨石应用/集成其他应用(可能技术栈不同)/各前端模块独立开发部署.
301 0
乾坤之大,一锅炖不下
|
人工智能 量子技术 开发者
5年计划两年完成!霍尼韦尔超速将量子计算机体量翻十倍!
近日,霍尼韦尔又搞出了「大动作」,霍尼韦尔预计将在18至24个月内提前完成「五年计划」:量子计算机体量翻十倍!
116 0
5年计划两年完成!霍尼韦尔超速将量子计算机体量翻十倍!
|
tengine 算法 智能网卡
后摩尔时代,如何给你的CPU减负?
本文讲的是后摩尔时代,如何给你的CPU减负,通用处理器(CPU)的摩尔定律已入暮年,而机器学习和Web服务的规模却在指数级增长。如何用硬件加速来提升性能、降低成本?下面我们一起来看看。
12985 0
|
安全 大数据 云计算

热门文章

最新文章