MaxCompute在网络舆情监控系统中的应用

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 基于阿里云MaxCompute和其他云服务自建网络舆情监控平台的一些分享

背景介绍

根据中国互联网络信息中心(CNNIC)报告显示,我国的网民规模增长迅猛,截至2016年12月,我国网民规模达7.31亿,较2015年底提升了6.52个百分点。互联网成为反映社会舆情的一个重要载体。随着以社交媒体为主的互联网应用的普及和深入,网络舆情热点层出不穷,特别是当前微博、微信、新闻客户端等新媒体发展极为迅猛,其强大的舆论号召力与传播力让任何人都无法轻视。互联网已经成为政府了解民情的直接渠道,同时也成为企业接触客户、宣传营销的重要阵地。

国内某汽车企业所搭建的网络舆情监控平台,通过建设互联网媒体舆情综合监测分析系统,对新闻、论坛、博客、微博、视频、APP、传统纸媒等进行全面的覆盖,客户可以及时获取与自己关心的网络舆情信息,及时挖掘出网络舆情热点信息和背后的网络推手并进行持续的监控和跟踪,对舆情信息进行深度挖掘,发现潜在的舆情热点,对于特定的舆情事件可以及时提供分析报告。

需求概要

业务部门对舆情监控平台要求的高实时性(刷新频率在5分钟以内),方便的自行添加监控内容,能监控媒体及不同编辑对品牌和产品的友好度,并且内快速的形成相关的舆情报告。基于业务部门的要求情况,系统没有采用阿里云现有的舆情监控服务,而是使用阿里云ECS和MaxCompute服务搭建了一套基于爬虫和自然语言分析的舆情系统,已满足业务部门个性化的需求。

系统设计

3177bf1d1f1e9722f40e9acc034fec53a5e5a084

系统架构图

02fdc6e9eeac304330c8274f90c2777e1c4ce36a

业务架构

8a4731b36b55dfe0fef3eb649c568559c7b2db20

系统拓扑图

前端请求SLB进行负载均衡,下发到2个Web子系统,主要的数据处理工作由MaxCompute完成,搜索引擎使用3台ECS部署了ES来承载,数据收集则由多个爬虫系统完成,同时也有一台ECS用户自然语言处理,相关的结构化数据存储则由RDS提供。

爬虫系统和自然语言处理不在本文中详细介绍,主要介绍MaxCompute中数据处理的相关内容。

 

相关MaxCompute任务根据功能分为几类:模型训练、竞品分析、舆情监控、媒体分析、预警中心和事件分析等。

相关任务截图:

f3e9dc3ad5d31db81f15982f17b6680786438ebb

主要的几类任务介绍

模型训练任务

关键词监控:主要是通过使用MR任务使用TF-IDF的统计方法,同时使用MR进行去过滤。

计算词向量:通过数加平台的机器学习功能,将相关关键字进行数字化的工作。

6af808434aeea1460df01e2528c9998d46187d32

关键词监控工作流

舆情监控任务

包含信息去重、去水军信息、计算统计数据等任务

9115822ee13823694e4fd3f7c60bf28c06af50db

计算统计数据工作流

媒体分析类:活跃媒体统计、媒体品牌统计、去重过滤类等任务,其他任务包括热词统计、关键词同步、热点新闻统计等,通过DataIDE进行自动调度

938db842022ee414034ef995c487369545df3100

任务运行概览

监控结果

6c706eb93d5fc76c2806efe624ef8671d7dea55b

监控概览

c74aeb7bcd4a4d27040080173e084e39e1d6e3bc

舆情监控

bc3f2bea6cbcdda1e6ba3c6080dc354e72fe49df

媒体分析

目前该系统已上线3个月,满足的业务部门目前的监控需求,而且在时效性和精准性方面明显优于第三方监测公司的报告。

 

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
解读 C++ 助力的局域网监控电脑网络连接算法
本文探讨了使用C++语言实现局域网监控电脑中网络连接监控的算法。通过将局域网的拓扑结构建模为图(Graph)数据结构,每台电脑作为顶点,网络连接作为边,可高效管理与监控动态变化的网络连接。文章展示了基于深度优先搜索(DFS)的连通性检测算法,用于判断两节点间是否存在路径,助力故障排查与流量优化。C++的高效性能结合图算法,为保障网络秩序与信息安全提供了坚实基础,未来可进一步优化以应对无线网络等新挑战。
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
103 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于DeepSeek的生成对抗网络(GAN)在图像生成中的应用
生成对抗网络(GAN)通过生成器和判别器的对抗训练,生成高质量的合成数据,在图像生成等领域展现巨大潜力。DeepSeek作为高效深度学习框架,提供便捷API支持GAN快速实现和优化。本文详细介绍基于DeepSeek的GAN技术,涵盖基本原理、实现步骤及代码示例,展示其在图像生成中的应用,并探讨优化与改进方法,如WGAN、CGAN等,解决模式崩溃、训练不稳定等问题。最后,总结GAN在艺术创作、数据增强、图像修复等场景的应用前景。
198 16
基于ssm的网络直播带货管理系统,附源码+数据库+论文
该项目为网络直播带货网站,包含管理员和用户两个角色。管理员可进行主页、个人中心、用户管理、商品分类与信息管理、系统及订单管理;用户可浏览主页、管理个人中心、收藏和订单。系统基于Java开发,采用B/S架构,前端使用Vue、JSP等技术,后端为SSM框架,数据库为MySQL。项目运行环境为Windows,支持JDK8、Tomcat8.5。提供演示视频和详细文档截图。
57 10
云原生应用网关进阶:阿里云网络ALB Ingress 全面增强
云原生应用网关进阶:阿里云网络ALB Ingress 全面增强
|
13天前
医院网络舆情风险分析
医院网络舆情风险分析
机器学习在网络流量预测中的应用:运维人员的智慧水晶球?
机器学习在网络流量预测中的应用:运维人员的智慧水晶球?
109 19
云栖实录 | 大模型在大数据智能运维的应用实践
云栖实录 | 大模型在大数据智能运维的应用实践
147 2