全景摄像机安装步骤

简介:

安装步骤

第一步:拿出支架,准备好工具和零件:涨塞、螺丝、改锥、小锤、电钻等必要工具;按事先确定的安装位置,检查好涨塞和自攻螺丝的大小型号,试一试支架螺丝和摄像机底座的螺口是否合适,预埋的管线接口是否处理好,测试电缆是否畅通,就绪后进入安装程序。

第二步:拿出摄像机,按照事先确定的摄像机镜头型号和规格,仔细装上镜头(红外一体式摄像机不需安装镜头),注意不要用手碰镜头和CCD确认固定牢固后,接通电源,连通主机或现场使用监视器、小型电视机等调整好光圈焦距。

第三步 :拿出支架、涨塞、螺丝、改锥、小锤、电钻等工具,按照事先确定的位置,装好支架。检查牢固后,将摄像机按照约定的方向装上;

第四步:如果需要安装护罩,在第二步后,直接从这里开始安装护罩。1、打开护罩上盖板和后挡板;2、抽出固定金属片,将摄像机固定好;3、将电源适配器装入护罩内;4、复位上盖板和后挡板,理顺电缆,固定好,装到支架上。

第五步:把焊接好的视频电缆BNC插头插入视频电缆的插座内,确认固定牢固。

第六步:将电源适配器的电源输出插头插入监控摄像机的电源插口,并确认牢固度。

第七步:把电缆的另一头接入控制主机或监视器(电视机),确保牢固。

第八步:接通监控主机和摄像机电源,通过监视器调整摄像机角度到预定范围。

相关技术

从产品技术面剖析全景摄像机,则主要有四大关键点。

第一,镜头优劣会大幅度影响监控图像的质量;好的镜头可达到高清、百万像素以上,而帧速(每秒钟动画传输的速度)越高,也越能看清楚监控目标的移动过程与细节动作。

第二,一款性能良好的全景摄像机,必然有高分辨率的图像传感器。由于全景摄像机的监控范围宽广,图像传感器的信息量必然十分庞大,不像一般的摄像机只需处理监测场景中一部分的画面。因此,图像传感器的分辨率高低与否,也是影响监控成像放大后,图片清不清晰的关键。

第三,使用鱼眼镜头的全景摄像机,其成像原理与普通摄像机不一样,图像边缘往往会形成一个凸出、变形的画面,所以要比普通摄像机更容易使图像扭曲或失真,影响成像质量。所以如何矫正、还原图像,看清图像中的监控物体,就是全景摄像机最重要的问题。理论上,有两种方式能矫正鱼眼镜头成像失真的问题,一种是由后端平台进行信息处理、还原成像;另一种则是在摄像机内置软件直接矫正,然后再传输到监测后端。一般而言,比较推荐使用后者解决鱼眼镜头失真的问题,这样一来,可以舒缓网络传输宽带和后端存储的压力,提高了监控运行的效率。

第四,可以使用虚拟PTZ对存储的图像做放大、缩小等细节观察。PTZ在安防监控领域是控制云台上下左右转动与镜头变聚焦,用于自动或手动追踪锁定的目标,在监测范围内一路跟拍追踪目标。而全景摄像机所采用的虚拟PTZ,应用概念类似云台的追踪效果,只是不必象真实的云台那样进行实际的机械化转动,而是通过缩放图像来达到类似的效果,因而能大幅递增监控系统的使用寿命,使得监控人员在操作上更容易上手,也能降低维护费用。

应用范围

全景摄像机的应用范围,一般包括公共场所、工业监控、交通管理、医疗设施、楼宇监控、校园、商场与娱乐休闲场所等。但由于全景摄像机的推出时日尚短,技术上有其局限性,如上文所述的图像失真等问题,以及鱼眼全景摄像机的超广角效果,虽然能监控大范围面积,但相对来说,它的焦距很短,使得侦测范围大受限制,大约在半径5米内可以看清人脸,更远的话就会显得模糊。

因此,在实际运用上,全景摄像机比较适用在空间小、监视环境简单的场所,例如零售店、小型商场、电梯、停车场与会议室等等。只需要一台全景摄像机,就能实现无死角、看清细节的监控。至于环境简单而空旷的场景,例如大型会场等,由于架设多台监控摄像机有其不便性,使用全景摄相机也是个不错的选择。但若是要应用在相对复杂的环境里,例如人流量大的商场、步行街、十字路口等,全景摄像机则仍然无法完全替代枪机、半球等常规型传统摄像机,所以一般还是建议搭配常规型摄像机使用,彼此互补不足。
本文转自d1net(转载)

相关文章
|
4月前
|
芯片
[相机配置] 海康相机丢包配置环境
[相机配置] 海康相机丢包配置环境
153 0
|
8月前
|
编解码 API CDN
将卫星拍摄的地球全景,设为你的Windows桌面
开源软件,将卫星视频设为桌面
106 0
|
9月前
|
编解码 监控 算法
摄像机和镜头的基础知识
摄像机和镜头的基础知识
105 0
|
10月前
|
Web App开发 Shell 数据安全/隐私保护
Ubuntu16(ROS_Kinetic)海康威视网络摄像机(单目)内参标定
Ubuntu16(ROS_Kinetic)海康威视网络摄像机(单目)内参标定
404 0
An工具介绍之摄像头
An工具介绍之摄像头
241 0
An工具介绍之摄像头
|
传感器 人工智能 算法
Feat-Calibr | 一款实用的开源激光雷达到车体外参的标定工具
对于拥有惯导的自动驾驶车辆而言,激光雷达到惯导/车体(以下简称激光雷达外参自标定)的方法对后续的感知、定位等下游应用具有非常重要的意义。对于这一问题,最容易想到的办法是同时跑激光里程计与惯导的里程计,并使用手眼标定的方法寻找这外参。这个方法最主要的问题是标定精度受制于激光雷达里程计的精度,对于当前量产的固态激光雷达而言,受制于有限的FOV,测距精度较差,抖动,以及多变的标定场景等问题,难以适配鲁棒且高精度的激光里程计用于外参标定。
Feat-Calibr | 一款实用的开源激光雷达到车体外参的标定工具
|
传感器 缓存 物联网
5_2_1_光照信息屏_软件详解|学习笔记
快速学习5_2_1_光照信息屏_软件详解。
112 0
5_2_1_光照信息屏_软件详解|学习笔记
|
传感器 IDE 物联网
HaaS EDU场景式应用学习 - 光照信息屏
HaaS EDU场景式应用学习 - 光照信息屏
HaaS EDU场景式应用学习 - 光照信息屏
|
传感器 编解码 开发者

热门文章

最新文章