《Hadoop与大数据挖掘》——2.5 K-Means算法原理及Hadoop MapReduce实现

  1. 云栖社区>
  2. 华章计算机>
  3. 博客>
  4. 正文

《Hadoop与大数据挖掘》——2.5 K-Means算法原理及Hadoop MapReduce实现

华章计算机 2017-07-03 14:41:00 浏览4537
展开阅读全文

本节书摘来自华章计算机《Hadoop与大数据挖掘》一书中的第2章,第2.5节,作者 张良均 樊哲 位文超 刘名军 许国杰 周龙 焦正升,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

2.5 K-Means算法原理及Hadoop MapReduce实现

2.5.1 K-Means算法原理

K-Means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表。它是将数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则(如图2-45所示)。K-Means算法以欧氏距离作为相似度测度,求对应某一初始聚类中心向量V最优分类,使得评价指标最小。算法采用误差平方和准则函数作为聚类准则函数。

image

具体的算法步骤如下:

image
image

2.5.2 动手实践:K-Means算法实现

编写单机版的K-Means算法有利于理解Hadoop实

网友评论

登录后评论
0/500
评论
华章计算机
+ 关注
所属云栖号: 华章计算机