《计算机视觉:模型、学习和推理》——2.4 条件概率

简介:

本节书摘来自华章计算机《计算机视觉:模型、学习和推理》一书中的第2章,第2.4节,作者:(英)普林斯(Prince,J. D.)著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。

2.4 条件概率

image

 图2-5 条件概率x和y的联合概率密度函数以及两个条件概率分布Pr(xy=y1)和Pr(xy=y2)。通过从联合概率密度函数中提取切片并规范化,确保区域一致。同样的操作也适用于离散分布给定y取y时x的条件概率,是随机变量x在y取固定值y时x的相对概率的取值。这个条件概率记为Pr(xy=y*)。“”可以理解为“给定”。
条件概率Pr(xy=y)可以由联合分布Pr(x,y)计算出来。特别是,计算联合分布中某个恰当的切片Pr(x,y=y)(见图2-5)。切片值表示出当y=y*时x取不同值的相对概率,但其本身没有形成有效的概率分布。因为它们仅构成联合分布的一小部分,其总和不会是1,而联合概率自身总和为1。为计算条件概率分布,因此需要规范化切片中的总概率
image
其中,使用边缘概率关系式(式(2-1))去简化分母。通常情况下不会显式定义y=y*,所以条件概率关系式可简化缩写为:
image
由对称性也可得:
image
当有两个以上的变量时,可以不断用条件概率分布将联合概率分布分解为乘积形式:
image

目录
打赏
0
0
0
0
1408
分享
相关文章
Python3 OpenCV4 计算机视觉学习手册:6~11(5)
Python3 OpenCV4 计算机视觉学习手册:6~11(5)
111 0
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-2
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。
AI计算机视觉笔记二十四:YOLOP 训练+测试+模型评估
本文介绍了通过正点原子的ATK-3568了解并实现YOLOP(You Only Look Once for Panoptic Driving Perception)的过程,包括训练、测试、转换为ONNX格式及在ONNX Runtime上的部署。YOLOP由华中科技大学团队于2021年发布,可在Jetson TX2上达到23FPS,实现了目标检测、可行驶区域分割和车道线检测的多任务学习。文章详细记录了环境搭建、训练数据准备、模型转换和测试等步骤,并解决了ONNX转换过程中的问题。
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-1
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)
大模型在自然语言处理(NLP)、计算机视觉(CV)和多模态模型等领域应用最广
【7月更文挑战第26天】大模型在自然语言处理(NLP)、计算机视觉(CV)和多模态模型等领域应用最广
370 11
2024年6月计算机视觉论文推荐:扩散模型、视觉语言模型、视频生成等
6月还有一周就要结束了,我们今天来总结2024年6月上半月发表的最重要的论文,重点介绍了计算机视觉领域的最新研究和进展。
217 8
计算机视觉借助深度学习实现了革命性进步,从图像分类到复杂场景理解,深度学习模型如CNN、RNN重塑了领域边界。
【7月更文挑战第2天】计算机视觉借助深度学习实现了革命性进步,从图像分类到复杂场景理解,深度学习模型如CNN、RNN重塑了领域边界。AlexNet开启新时代,后续模型不断优化,推动对象检测、语义分割、图像生成等领域发展。尽管面临数据隐私、模型解释性等挑战,深度学习已广泛应用于安防、医疗、零售和农业,预示着更智能、高效的未来,同时也强调了技术创新、伦理考量的重要性。
91 1
2024年5月计算机视觉论文推荐:包括扩散模型、视觉语言模型、图像编辑和生成、视频处理和生成以及图像识别等各个主题
五月发布的计算机视觉领域重要论文涵盖了扩散模型、视觉语言模型、图像生成与编辑及目标检测。亮点包括:1) Dual3D提出双模式推理策略,实现高效文本到3D图像生成;2) CAT3D利用多视图扩散模型创建3D场景,仅需少量图像;3) Hunyuan-DiT是多分辨率的中文理解扩散Transformer,可用于多模态对话和图像生成;4) 通过潜在扩散模型从EEG数据重建自然主义音乐,展示复杂音频重建潜力。此外,还有关于视觉语言模型和图像编辑的创新工作,如BlobGEN用于合成具有控制性的图像。
344 3

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等