《数据科学:R语言实现》——第2章 数据抽取、转换和加载

简介:

本节书摘来自华章出版社《数据科学:R语言实现》一 书中的第1章,第1.1节,作者:R for Data Science Cookbook 丘祐玮(David Chiu),更多章节内容可以访问云栖社区“华章计算机”公众号查看。

第2章

数据抽取、转换和加载

2.1 引言

在使用数据回答关键业务问题之前,最重要的事情是准备数据。数据通常存在文件中,使用Excel或者文本编辑器可以轻松地获取。但是数据也可以来自于其他来源,例如数据库、网站和各种文件格式。能够从这些源中引入数据很重要。
数据主要有4种类型。以文本形式存储的数据最简单。由于一些用户需要把数据存在结构化的文件中,因此带有.tab或.csv扩展名的文件可以用来存放一定列的数据。很多年以来,Excel在数据处理领域占据主导地位,这个软件使用.xls和.xlsx文件格式。掌握读取和操作数据库中的数据是另一项重要的技能。然而,大多数数据并不是存在数据库中的,我们也必须知道如何使用网络爬取技术从互联网上获取数据。作为本章的一部分,我们会介绍如何使用rvest程序包,从互联网上爬取数据。
许多有经验的开发人员已经创建了程序包,允许初学者更简便地的获取数据。我们关注于使用这些程序包执行数据抽取、转换和加载。在本章中,我们首先学习如何使用R程序包读取文本格式的数据,并逐行扫描文件。然后我们会讨论从数据库和Excel中读取结构化数据。最后,我们会学习如何使用R网络爬取工具,从互联网和社交网络上爬取数据。

目录
打赏
0
0
0
0
1408
分享
相关文章
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
R语言数据变换:使用tidyr包进行高效数据整形的探索
【8月更文挑战第29天】`tidyr`包为R语言的数据整形提供了强大的工具。通过`pivot_longer()`、`pivot_wider()`、`separate()`和`unite()`等函数,我们可以轻松地将数据从一种格式转换为另一种格式,以满足不同的分析需求。掌握这些函数的使用,将大大提高我们处理和分析数据的效率。
|
7月前
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
119 9
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
R语言数据清洗:高效处理缺失值与重复数据的策略
【8月更文挑战第29天】处理缺失值和重复数据是数据清洗中的基础而重要的步骤。在R语言中,我们拥有多种工具和方法来有效地应对这些问题。通过识别、删除或插补缺失值,以及删除重复数据,我们可以提高数据集的质量和可靠性,为后续的数据分析和建模工作打下坚实的基础。 需要注意的是,处理缺失值和重复数据时,我们应根据实际情况和数据特性选择合适的方法,并在处理过程中保持谨慎,以避免引入新的偏差或错误。
R语言数据合并:掌握`merge`与`dplyr`中`join`的巧妙技巧
【8月更文挑战第29天】如果你已经在使用`dplyr`进行数据处理,那么推荐使用`dplyr::join`进行数据合并,因为它与`dplyr`的其他函数(如`filter()`、`select()`、`mutate()`等)无缝集成,能够提供更加流畅和一致的数据处理体验。如果你的代码中尚未使用`dplyr`,但想要尝试,那么`dplyr::join`将是一个很好的起点。
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
R语言数据操作:使用dplyr进行数据处理的深度探索
【8月更文挑战第27天】`dplyr`包以其简洁、强大的数据处理能力,在R语言的数据分析领域占据了重要地位。通过`select()`、`filter()`、`arrange()`、`mutate()`和`summarise()`等核心函数,结合管道操作符`%>%`,我们可以轻松地完成数据筛选、排序、变换和汇总等操作。掌握`dplyr`的使用,将极大地提高我们在R语言中进行
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等