《Spark大数据分析实战》——1.3节Spark架构与运行逻辑

简介:

本节书摘来自华章社区《Spark大数据分析实战》一书中的第1章,第1.3节Spark架构与运行逻辑,作者高彦杰 倪亚宇,更多章节内容可以访问云栖社区“华章社区”公众号查看

1.3 Spark架构与运行逻辑
1.?Spark的架构
Driver:运行Application的main()函数并且创建SparkContext。
Client:用户提交作业的客户端。
Worker:集群中任何可以运行Application代码的节点,运行一个或多个Executor进程。
Executor:运行在Worker的Task执行器,Executor启动线程池运行Task,并且负责将数据存在内存或者磁盘上。每个Application都会申请各自的Executor来处理任务。
SparkContext:整个应用的上下文,控制应用的生命周期。
RDD:Spark的基本计算单元,一组RDD形成执行的有向无环图RDD Graph。
DAG Scheduler:根据Job构建基于Stage的DAG工作流,并提交Stage给
TaskScheduler。
TaskScheduler:将Task分发给Executor执行。
SparkEnv:线程级别的上下文,存储运行时的重要组件的引用。
2.?运行逻辑
(1)Spark作业提交流程
如图1-3所示,Client提交应用,Master找到一个Worker启动Driver,Driver向Master或者资源管理器申请资源,之后将应用转化为RDD有向无环图,再由DAGScheduler将RDD有向无环图转化为Stage的有向无环图提交给TaskScheduler,由TaskScheduler提交任务给Executor进行执行。任务执行的过程中其他组件再协同工作确保整个应用顺利执行。


82605248aa767cf4b5e60fab65ee3e3dc7abc312

(2)Spark作业运行逻辑
如图1-4所示,在Spark应用中,整个执行流程在逻辑上运算之间会形成有向无环图。Action算子触发之后会将所有累积的算子形成一个有向无环图,然后由调度器调度该图上的任务进行运算。Spark的调度方式与MapReduce有所不同。Spark根据RDD之间不同的依赖关系切分形成不同的阶段(Stage),一个阶段包含一系列函数进行流水线执行。图中的A、B、C、D、E、F,分别代表不同的RDD,RDD内的一个方框代表一个数据块。数据从HDFS输入Spark,形成RDD A和RDD C,RDD C上执行map操作,转换为RDD D,RDD B和RDD E进行join操作转换为F,而在B到F的过程中又会进行Shuff?le。最后RDD F通过函数saveAsSequenceFile输出保存到HDFS中。


0f10d4534ecd4b9b472e8306c6a015d9aaaabc3a
目录
打赏
0
0
0
0
1408
分享
相关文章
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
143 79
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
350 2
ClickHouse与大数据生态集成:Spark & Flink 实战
【赵渝强老师】大数据主从架构的单点故障
大数据体系架构中,核心组件采用主从架构,存在单点故障问题。为提高系统可用性,需实现高可用(HA)架构,通常借助ZooKeeper来实现。ZooKeeper提供配置维护、分布式同步等功能,确保集群稳定运行。下图展示了基于ZooKeeper的HDFS HA架构。
117 0
MaxCompute 近实时增全量处理一体化新架构和使用场景介绍
MaxCompute 近实时增全量处理一体化新架构和使用场景介绍
大数据时代的引擎:大数据架构随记
大数据架构通常分为四层:数据采集层、数据存储层、数据计算层和数据应用层。数据采集层负责从各种源采集、清洗和转换数据,常用技术包括Flume、Sqoop和Logstash+Filebeat。数据存储层管理数据的持久性和组织,常用技术有Hadoop HDFS、HBase和Elasticsearch。数据计算层处理大规模数据集,支持离线和在线计算,如Spark SQL、Flink等。数据应用层将结果可视化或提供给第三方应用,常用工具为Tableau、Zeppelin和Superset。
1474 8
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
576 3
【赵渝强老师】基于大数据组件的平台架构
揭秘 Elasticsearch 集群架构,解锁大数据处理神器
Elasticsearch 是一个强大的分布式搜索和分析引擎,广泛应用于大数据处理、实时搜索和分析。本文深入探讨了 Elasticsearch 集群的架构和特性,包括高可用性和负载均衡,以及主节点、数据节点、协调节点和 Ingest 节点的角色和功能。
139 0
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
276 2
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
135 2
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
416 4

热门文章

最新文章