《统计会犯错——如何避免数据分析中的统计陷阱》一一2.3 置信区间的优势

简介:

本节书摘来自异步社区出版社《统计会犯错——如何避免数据分析中的统计陷阱》一书中的第2章,第2.3节,作者:【美】Alex Reinhart(亚历克斯·莱因哈特),更多章节内容可以访问云栖社区“异步社区”公众号查看。

2.3 置信区间的优势

与考虑试验结果的显著性相比,置信区间是一种更合理的结论表述,它可以给出效应的大小。即使置信区间包含0,它的宽度也会告诉你很多信息:一个狭窄的包含 0 的置信区间表明效应可能比较小,而一个较宽的包含 0 的置信区间则表明测量值并不十分精确,因而不足以作出结论。

对于那些与0没有显著差异的测量,物理学家常常使用置信区间给出它们的界值。例如,在搜索基础粒子时,“该信号在统计上是不显著的”这种说法没有意义。相反,对于粒子撞击时的速率,物理学家一般利用置信区间赋给它们一个上界,然后将这个结果与预测粒子行为的已有理论进行比较(促进未来的试验人员建造更大的试验设备来发现它)。

利用置信区间来解释结果为试验设计提供了一种新思路。不再关注显著性假设检验的功效,转而问这样的问题:“我应该搜集多少数据来度量理想精度的效应?”尽管高功效的试验可以产生显著性的结果,但如果其置信区间很宽的话,结论同样难以解释。

每次试验的数据会不一样,所以每次试验得到的置信区间大小也会发生变化。以前是选择一个样本大小以达到某种程度的功效水平,现在我们选择一个样本容量大小,只要使得到的置信区间的宽度小于目标宽度的概率达到99% 即可(这个数字被称为其并没有固定的标准,或者是95%)16。

在常见的假设检验里,已经发展出很多依赖于置信度的样本量选择方法;不过这仍然是一个新的领域,统计学家还没有研究透彻17(这些方法的名字是样本估计的精度,英文缩写为AIPE)。统计功效比置信度使用更多,在各领域里统计学家还没有采用置信度。尽管如此,这些方法非常有用。统计显著性经常是拐杖,名字虽然中听,但并不能像一个好的置信区间那样提供多少有用的信息。

目录
打赏
0
0
0
0
1819
分享
相关文章
Python数据分析入门涉及基础如Python语言、数据分析概念及优势。
【7月更文挑战第5天】Python数据分析入门涉及基础如Python语言、数据分析概念及优势。关键工具包括NumPy(数组操作)、Pandas(数据处理)、Matplotlib(绘图)、Seaborn(高级可视化)和Scikit-learn(机器学习)。流程涵盖数据获取、清洗、探索、建模、评估和展示。学习和实践这些将助你有效利用数据。
79 2
视觉智能开放平台产品使用合集之对于统计研究和数据分析,有哪些比较好的工具推荐
视觉智能开放平台是指提供一系列基于视觉识别技术的API和服务的平台,这些服务通常包括图像识别、人脸识别、物体检测、文字识别、场景理解等。企业或开发者可以通过调用这些API,快速将视觉智能功能集成到自己的应用或服务中,而无需从零开始研发相关算法和技术。以下是一些常见的视觉智能开放平台产品及其应用场景的概览。
118 0
R语言对综合社会调查GSS数据进行自举法bootstrap统计推断、假设检验、探索性数据分析可视化|数据分享(上)
R语言对综合社会调查GSS数据进行自举法bootstrap统计推断、假设检验、探索性数据分析可视化|数据分享
探索MATLAB世界:掌握基础知识与实用技能(1. MATLAB环境与基本操作 2. 数据类型与变量 3. 条件与循环,1. 数据分析与统计 2. 图像处理与计算机视觉 3. 信号处理与控制系统)
探索MATLAB世界:掌握基础知识与实用技能(1. MATLAB环境与基本操作 2. 数据类型与变量 3. 条件与循环,1. 数据分析与统计 2. 图像处理与计算机视觉 3. 信号处理与控制系统)
104 0
用Python进行健康数据分析:挖掘医疗统计中的信息
【4月更文挑战第12天】Python在医疗健康数据分析中扮演重要角色,具备数据处理、机器学习、可视化及丰富生态的优势。基本流程包括数据获取、预处理、探索、模型选择与训练、评估优化及结果可视化。应用案例包括疾病预测、药物效果分析和医疗资源优化,例如使用RandomForestClassifier进行疾病预测,Logit模型分析药物效果,以及linprog优化医疗资源配置。
1036 1
R语言对综合社会调查GSS数据进行自举法bootstrap统计推断、假设检验、探索性数据分析可视化|数据分享(下)
R语言对综合社会调查GSS数据进行自举法bootstrap统计推断、假设检验、探索性数据分析可视化|数据分享
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
135 2
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
416 4
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
150 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等