1. 阿里云>
  2. 云栖社区>
  3. 主题地图>
  4. K>
  5. keypoint

当前主题:keypoint

PCL点云特征描述与提取(4)

如何从一个深度图像(range image)中提取NARF特征 代码解析narf_feature_extraction.cpp #include <iostream> #include <boost/thread/thread.hpp> #include <p

阅读全文

实录 | 旷视研究院详解COCO2017人体姿态估计冠军论文(PPT+视频)

本文来自AI新媒体量子位(QbitAI) 12月13日晚,量子位·吃瓜社联合Face++论文解读系列第二期开讲,本期中旷视(Megvii)研究院解读了近期发表的人体姿态估计论文:Cascaded Pyramid Network for Multi-Person

阅读全文

PCL关键点(1)

关键点也称为兴趣点,它是2D图像或是3D点云或者曲面模型上,可以通过定义检测标准来获取的具有稳定性,区别性的点集,从技术上来说,关键点的数量相比于原始点云或图像的数据量减小很多,与局部特征描述子结合在一起,组成关键点描述子常用来形成原始数据的表示,而且不失代表

阅读全文

基于SURF特征的图像与视频拼接技术的研究和实现(一)

基于SURF特征的图像与视频拼接技术的研究和实现(一)      一直有计划研究实时图像拼接,但是直到最近拜读西电2013年张亚娟的《基于SURF特征的图像与视频拼接技术的研究和实现》,条理清晰、内容完整、实现的技术具有市场价值。因此定下决心以这篇论文为基础脉

阅读全文

OpenCV 估算图像的投影关系:基础矩阵和RANSAC

根据针孔摄像机模型,我们可以知道,沿着三维点X和相机中心点之间的连线,可以在图像上找到对应的点x。反过来,在三维空间中,与成像平面上的位置x对应的场景点可以位于这条线上的所有位置。这说明如果要根据图像中的一个点找到另一幅图像中对应的点,就需要在第二个成像平面

阅读全文

OpenCV 匹配兴趣点:SIFT、SURF 和二值描述子

上一篇文章中讲到如何检测图像中的兴趣点,以便后续的局部图像分析。为了进行基于兴趣点的图像分析,我们需要构建多种表征方式,精确地描述每个关键点。这些描述子通常是二值类型、整数型或浮点数型组成的向量。好的描述子要具有足够的独特性和鲁棒性,能唯一地表示图像中的每个

阅读全文

OpenCV3.2 双目摄像头标定与SGBM算法验证

双目标定的目标在于得出两个摄像头之间的旋转矩阵R(rotation matrix)和平移向量T(translation vector),以及各自的旋转矩阵Rl Rr、投影矩阵Pl Pr和重映射矩阵Q(disparity-to-depth mapping ma

阅读全文

OpenCV特征点检测------ORB特征

        ORB算法 ORB是是ORiented Brief的简称。ORB的描述在下面文章中: Ethan Rublee and Vincent Rabaud and Kurt Konolige and Gary Bradski, ORB: an ef

阅读全文