HTAP数据库 PostgreSQL 场景与性能测试之 15 - (OLTP) 物联网 - 查询一个时序区间的数据

本文涉及的产品
云原生数据库 PolarDB MySQL 版,Serverless 5000PCU 100GB
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云数据库 RDS MySQL Serverless,0.5-2RCU 50GB
简介:

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

pic

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

pic

在各种应用场景中都可以看到PostgreSQL的应用:

pic

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

pic

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 10

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - 物联网 - 查询一个时序区间的数据 (OLTP)

1、背景

在物联网、互联网、业务系统中都有时序数据,随着时间推移产生的数据。在时间维度或序列字段上呈现自增特性。

区间查询是一种按范围查询的业务需求。

PostgreSQL针对时序类型的数据,除了有传统的b-tree索引,还有一种块级索引BRIN,非常适合这种相关性很好的时序数据。这种索引在Oracle Exadata一体机上也有。而使用PostgreSQL可以免费享用这种高端特性。

2、设计

1亿条时序自增记录,按任意区间查询并输出 5万条记录

3、准备测试表

create table t_range(  
  id int,  
  ts timestamp default clock_timestamp()  
);  

4、准备测试函数(可选)

5、准备测试数据

insert into t_range(id) select generate_series(1,100000000);  

6、准备测试脚本

1、使用传统的b-tree索引

btree索引占用2142MB空间

create index idx_t_range_id on t_range using btree (id);  
  
postgres=# \di+ idx_t_range_id  
                              List of relations  
 Schema |      Name      | Type  |  Owner   |  Table  |  Size   | Description  
--------+----------------+-------+----------+---------+---------+-------------  
 public | idx_t_range_id | index | postgres | t_range | 2142 MB |  
(1 row)  

单次查询效率:

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from t_range where id between 1 and 50000;  
                                                                QUERY PLAN  
-------------------------------------------------------------------------------------------------------------------------------------------  
 Index Scan using idx_t_range_id on public.t_range  (cost=0.57..1527.31 rows=53167 width=12) (actual time=0.013..9.938 rows=50000 loops=1)  
   Output: id, ts  
   Index Cond: ((t_range.id >= 1) AND (t_range.id <= 50000))  
   Buffers: shared hit=411  
 Planning time: 0.060 ms  
 Execution time: 14.320 ms  
(6 rows)  
vi test.sql  
  
\set id random(1,90000000)  
\set mx :id+50000  
select * from t_range where id between :id and :mx;  

2、使用BRIN块级索引

BRIN索引仅占用256KB空间

drop index idx_t_range_id;  
create index idx_t_range_id on t_range using brin (id) with (pages_per_range=64);  
postgres=# \di+ idx_t_range_id  
                              List of relations  
 Schema |      Name      | Type  |  Owner   |  Table  |  Size  | Description  
--------+----------------+-------+----------+---------+--------+-------------  
 public | idx_t_range_id | index | postgres | t_range | 256 kB |  
(1 row)  

单次查询效率:

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from t_range where id between 1 and 50000;  
                                                          QUERY PLAN  
-------------------------------------------------------------------------------------------------------------------------------  
 Bitmap Heap Scan on public.t_range  (cost=43.31..52572.18 rows=38593 width=12) (actual time=1.497..9.807 rows=50000 loops=1)  
   Output: id, ts  
   Recheck Cond: ((t_range.id >= 1) AND (t_range.id <= 50000))  
   Rows Removed by Index Recheck: 9200  
   Heap Blocks: lossy=320  
   Buffers: shared hit=355  
   ->  Bitmap Index Scan on idx_t_range_id  (cost=0.00..33.66 rows=47360 width=0) (actual time=1.489..1.489 rows=3200 loops=1)  
         Index Cond: ((t_range.id >= 1) AND (t_range.id <= 50000))  
         Buffers: shared hit=35  
 Planning time: 0.036 ms  
 Execution time: 14.162 ms  
(11 rows)  

压测

vi test.sql  
  
\set id random(1,90000000)  
\set mx :id+50000  
select * from t_range where id between :id and :mx;  

7、测试

压测

CONNECTS=16  
TIMES=300  
export PGHOST=$PGDATA  
export PGPORT=1999  
export PGUSER=postgres  
export PGPASSWORD=postgres  
export PGDATABASE=postgres  
  
pgbench -M prepared -n -r -f ./test.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES  

8、测试结果

1、b-tree索引

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 16  
number of threads: 16  
duration: 300 s  
number of transactions actually processed: 188165  
latency average = 25.509 ms  
latency stddev = 4.625 ms  
tps = 627.166703 (including connections establishing)  
tps = 627.187145 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set id random(1,90000000)  
         0.000  \set mx :id+50000  
        25.507  select * from t_range where id between :id and :mx;  

2、brin索引

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 16  
number of threads: 16  
duration: 300 s  
number of transactions actually processed: 189889  
latency average = 25.278 ms  
latency stddev = 4.570 ms  
tps = 632.907768 (including connections establishing)  
tps = 632.927776 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set id random(1,90000000)  
         0.000  \set mx :id+50000  
        25.276  select * from t_range where id between :id and :mx;  

TPS

1、b-tree索引

627  
  
相当于每秒返回3135万行记录。  

2、brin索引

632  
  
相当于每秒返回3160万行记录。  

平均响应时间

1、b-tree索引

25.509 毫秒  

2、brin索引

25.278 毫秒  

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
相关文章
|
15天前
|
关系型数据库 MySQL 数据库
轻松入门MySQL:精准查询,巧用WHERE与HAVING,数据库查询如虎添翼(7)
轻松入门MySQL:精准查询,巧用WHERE与HAVING,数据库查询如虎添翼(7)
|
21天前
|
Cloud Native OLAP OLTP
在业务处理分析一体化的背景下,开发者如何平衡OLTP和OLAP数据库的技术需求与选型?
在业务处理分析一体化的背景下,开发者如何平衡OLTP和OLAP数据库的技术需求与选型?
122 4
|
29天前
|
SQL 缓存 PHP
PHP技术探究:优化数据库查询效率的实用方法
本文将深入探讨PHP中优化数据库查询效率的实用方法,包括索引优化、SQL语句优化以及缓存机制的应用。通过合理的优化策略和技巧,可以显著提升系统性能,提高用户体验,是PHP开发者不容忽视的重要议题。
|
2天前
|
SQL 存储 Oracle
关系型数据库查询数据的语句
本文介绍了关系型数据库中的基本SQL查询语句,包括选择所有或特定列、带条件查询、排序、分组、过滤分组、表连接、限制记录数及子查询。SQL还支持窗口函数、存储过程等高级功能,是高效管理数据库的关键。建议深入学习SQL及相应数据库系统文档。
6 2
|
16天前
|
缓存 监控 数据库
优化数据库查询性能的八大技巧
在今天的互联网时代,数据库是许多应用程序的核心组件之一。优化数据库查询性能是提升应用程序整体性能的关键。本文介绍了八种有效的技巧,帮助开发人员提高数据库查询性能,从而提升应用程序的响应速度和用户体验。
|
1月前
|
SQL 存储 关系型数据库
sql数据库查询语句大全
sql数据库查询语句大全
|
9天前
|
测试技术 C语言
网站压力测试工具Siege图文详解
网站压力测试工具Siege图文详解
19 0
|
1月前
|
JavaScript jenkins 测试技术
这10款性能测试工具,收藏起来,测试人的工具箱!
这10款性能测试工具,收藏起来,测试人的工具箱!
|
1月前
|
人工智能 监控 测试技术
利用AI辅助工具提升软件测试效率
【2月更文挑战第17天】 随着科技的不断发展,人工智能(AI)在各个领域的应用越来越广泛。在软件测试领域,AI技术也发挥着重要作用。本文将探讨如何利用AI辅助工具提升软件测试效率,包括自动化测试、智能缺陷识别和预测等方面。通过引入AI技术,软件测试过程将变得更加高效、准确和可靠。
161 1
|
1月前
|
Web App开发 前端开发 测试技术
探索自动化测试工具:Selenium的威力与应用
探索自动化测试工具:Selenium的威力与应用
探索自动化测试工具:Selenium的威力与应用

相关产品

  • 云原生数据库 PolarDB